Какие есть нормы установки калориферов для приточной установки?

Калориферы КСк. Расчет и подбор водяных калориферов КСк – Т.С.Т.

Калориферы КСк. Расчет и подбор водяных калориферов КСк

Расчет и подбор водяных калориферов КСк осуществляется в следующей последовательности:
1.
подсчет тепловой мощности для нагрева воздуха, 2. расчет фронтального сечения для прохода воздуха и подбор подходящих калориферов, 3. нахождение массовой скорости, 4. определение расхода теплоносителя, 5. подсчет скорости горячей воды в теплообменнике, 6. вычисление коэффициента теплопередачи, 7. определение среднего температурного напора, 8. нахождение теплопроизводительности калорифера или установки, 9. установление запаса по тепловой мощности, 10. расчет аэродинамического сопротивления, 11. определение гидравлического сопротивления по теплоносителю.

Все действия по расчету и подбору водяных калориферов типа КСк выложены пошагово. Прилагаются формулы и таблицы , технические данные и характеристики всех моделей данных воздухонагревателей. Каждый шаг подсчетов и вычислений сопровождается конкретным примером.

1. Определить тепловую мощность для нагрева определенного объема воздуха.
а) Определяем массовый расход нагреваемого воздуха
G (кг/ч) = L х р
L – объемное количество нагреваемого воздуха, м3/час
p – плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) – таблица показателей плотности представлена выше, кг/м3
б) Определяем расход теплоты для нагревания воздуха
Q (Вт) = G х c х ( t кон – t нач )
G – массовый расход воздуха, кг/час
с – удельная теплоемкость воздуха, Дж/(кг •K) , (показатель берется по температуре входящего воздуха, смотреть ниже – по таблице)
t нач – температура воздуха на входе в теплообменник, °С
t кон – температура нагретого воздуха на выходе из теплообменника, °С

Пример подбора и расчета калорифера КСк . Шаг- 1

Подобрать подходящий калорифер КСк для нагрева 17000 м3/час от температуры – 25°С до +23°С. Теплоноситель горячая вода с графиком 95°С на входе в воздухонагреватель, 50°С на выходе.
1. Определить тепловую мощность, необходимую для нагрева 1700 0 м3/час с температуры – 25°С до +23°С.
а) Определяем массовый расход нагреваемого воздуха
G (кг/ч) = 1 7000 х 1.3 = 2 21 00 кг/час
1 700 0 – объемное количество нагреваемого воздуха, м3/час
1.3 – плотность воздуха при температуре – 1°С (температура на входе – 25 °С плюс температура воздуха на выходе +2 3°С – делим на два) (- 25+2 3 )/2= – 2 /2= – 1 Плотность воздуха при температуре – 1 имеет значение 1.3 0
б) Определяем расход те п лоты для нагревания воздуха
Q (Вт) = ( 2 21 00 /3600 ) х 1009 х ( 2 3 – (- 25 ) ) = 2 97319 Вт
2 21 00 – массовый расход воздуха, кг/час
1009 – удельная теплоемкость при температуре входящего воздуха – 25 °С, Дж/(кг•K)
+2 3 – температура нагретого воздуха на выходе из теплообменника , °С
– 25 – температура воздуха на входе в теплообменник , °С

Температуру входящего воздуха можно принять, исходя из географического региона, в котором будут эксплуатироваться калориферы. Данные с расчетными средними температурами городов представлены в 3- х таблицах справа. Если в таблице отсутствует ваш город, следует принять показатели близлежащего.

2. Подбор и расчет калориферов – этап второй. Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха. Фронтальное сечение – рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.
f (м2) = G / v
G – массовый расход воздуха, кг/час
v – массовая скорость воздуха – для оребренных калориферов принимается в диапазоне 3 – 5 ( кг/м2•с ). Допустимые значения – до 7 – 8 кг/м2•с

Пример подбора и расчета калорифера КСк . Шаг- 2

Подобрать подходящий калорифер КСк для нагрева 1700 0 м3/час от температуры – 25°С до +23°С. Теплоноситель горячая вода с графиком 95°С на входе в воздухонагреватель, 50°С на выходе.
2. Расчет фронтального сечения для прохода воздуха. Подбираем необходим ую площадь сечени я под массовый расход воздуха 2 210 0 кг/час. Принимаем массовую скорость – 3.6 кг/м2•с .
f (м2) = ( 2 2100 /3600 ) / 3.6 = 1. 705 м2
2 21 00 – массовый расход воздуха, кг/час
3.6 – массовая скорость воздуха , кг/м2•с

Из расчета получилась требуемая площадь фронтального сечения для прохода воздуха – 1.705 м2. Далее, ориентируясь на данные из нижевыложенной таблицы, подбираем калорифер КСк, подходящий под это сечение. Наиболее подходящие модели КСк 3- 11 и КСк 4- 11 (площадь фронтального сечения этих теплообменников – 1.660 м2).

Что делать, если при расчете, мы получаем требуемую площадь сечения, а в таблице для подбора калориферов КСк, нет моделей с таким показателем. Тогда мы принимаем два или несколько калориферов одного номера, чтобы сумма их площадей соответствовала или приближалась к нужному значению. Например: при расчете у нас получилась требуемая площадь сечения – 0.926 м2. Воздухонагревателей с таким значением в таблице нет. Принимаем два теплообменника КСк 3- 9 с площадью 0.455 м2 (в сумме это дает 0.910 м2) и монтируем их по воздуху параллельно.
При выборе трех или четырех рядной модели (одинаковые номера калориферов – имеют одну и ту же площадь фронтального сечения), ориентируемся на то, что теплообменники КСк4 (четыре ряда) при одной и той же входящей температуре и производительности по воздуху, нагревают его в среднем на восемь- двенадцать градусов больше, чем КСк3 (три ряда теплонесущих трубок), но имеют большее аэродинамическое сопротивление.

Ниже представлена таблица с данными воздухонагревателей типа КСк. В таблице приводятся основные технические характеристики всех моделей данного теплообменника: площадь поверхности нагрева и фронтального сечения, присоединительных патрубков, коллектора и живого сечения для прохода воды, длина теплонагревательных трубок, число ходов и рядов, масса.

Водяной калорифер для приточной вентиляции: классификация, принцип работы, расчёт мощности

Калориферы для приточной вентиляции применяют в тех случаях, когда нужно обеспечить поступление во внутреннее помещение свежего воздуха извне при низких температурах. Летом наладить воздухообмен в жилых домах и на производственных предприятиях достаточно просто: при установке приточного вентилятора нужно только рассчитать его мощность для конкретной площади. Если же воздух снаружи холодный, то его прямое поступление внутрь здания ведёт к потере тепла.

Сбалансировать разницу температур, при этом освежая воздух, можно при помощи калорифера, который устанавливается непосредственно в системе вентиляции. Приходящий с улицы воздушный поток достигает необходимых параметров, проходя через систему фильтрации, нагревающие и охлаждающие элементы. Кроме этого, регулируется и содержание влаги.

Классификация

Для создания в здании оптимального микроклимата применяется система калориферного обогрева, то есть принудительного подогрева с помощью оборудования, которое устанавливается в воздушных каналах.

В зависимости от того, какой теплоноситель используется, выделяют 4 типа калориферов:

  • Паровые – применяются чаще всего на промышленных предприятиях, где выработка пара предусмотрена технологическими процессами.
  • Электрические – этот вариант самый простой в установке (нужен только источник питания для нагрева встроенных ТЭНов), но требует большого расхода электроэнергии. Использование электрокалорифера считается целесообразным только на объектах, площадь которых не превышает 150 м²
  • Водяные – этот тип нагревателя работает на основе горячей воды и устанавливается в системах вентиляции с прямоугольным или круглым сечением на площадях свыше 150 м² Данный тип обогрева надёжен, практичен, прост в обслуживании и недорог.

Особенностью нагревателя является то, что состав поступающего с улицы воздушного потока не должен быть липким, волокнистым, содержать твёрдые частицы. Допустимая запылённость — не более 0,5 мг/м³. Минимальная температура забираемого воздуха -20 °C.

При выборе калорифера учитывают следующие факторы:

  • площадь помещения;
  • погодные условия в данном климатическом поясе;
  • мощность вентиляции.

Нагреватель устанавливают во внутренней части вентиляционной шахты, поэтому он должен соответствовать её параметрам (конфигурации и размеру).

Если производительность будет низкой, то прибор не сможет прогреть воздушные массы.

Если нет возможности установить калорифер с нужными параметрами, то последовательно монтируются несколько механизмов, имеющих меньшую мощность.

Водяной калорифер: особенности конструкции

Водяной калорифер для приточной вентиляции экономичен в сравнении с электрическими аналогами: для того, чтобы нагреть одинаковый объём воздуха, используется энергии в 3 раза меньше, а производительность гораздо выше. Экономия достигается благодаря подключению к системе центрального отопления. С помощью термостата легко устанавливать необходимый температурный баланс.

Автоматическое управление повышает эффективность. Щит управления приточной вентиляцией с водяным калорифером не требует дополнительных модулей и представляет собою механизм управления и диагностирования аварийных ситуаций.

Состав системы выглядит следующим образом:

  • Температурные датчики уличной и обратной воды, приточного воздуха и степени загрязнённости фильтров.
  • Заслонки (для рециркуляции и воздушные).
  • Клапан нагревателя.
  • Циркуляционный насос.
  • Капиллярный термостат защиты от замерзания.
  • Вентиляторы (вытяжной и приточный) с механизмом контроля.
  • Контроль вытяжного вентилятора.
  • Пожарная сигнализация.

Водяной и паровой калориферы представлены в трёх разновидностях:

  • Гладкотрубные: большое количество полых трубок расположены вблизи друг от друга; теплоотдача небольшая.
  • Пластинчатые: ребристые трубки увеличивают площадь теплоотдачи.
  • Биметаллические: патрубки и коллекторы сделаны из меди, алюминиевое оребрение. Наиболее эффективная модель.

Принцип работы

Вентилятор, теплообменник и конвектор – так в общих чертах выглядит водяное нагревательное устройство.

Принцип работы приточной вентиляции таков:

  1. Воздушный поток поступает в специальные воздухозаборные решётки, предохраняющие от попадания в каналы вентиляции насекомых, мелких предметов, птиц, животных.
  2. Фильтры очищают воздух от загрязнений, вредных веществ, пыли.
  3. Калорифер при помощи тепла, поступающего от водяной магистрали, нагревает его до нужной температуры.
  4. Рекуператор смешивает вновь поступающий воздух с нагретым.
  5. Вентилятор подаёт прогретые воздушные массы в помещение, а диффузор распределяет их равномерно по всей площади.
  6. Шумопоглотители снижают звуковую мощность работающей установки.
  7. В случае отключения подачи воздуха срабатывают клапаны, не допускающие поступления холодного воздушного потока внутрь помещения.

Калорифер, не имеющий собственного нагревателя, состоит из двух основных элементов:

  • Теплообменник, конструкция которого представлена системой трубок из металла – вода, поступающая из общей системы отопления, достигает здесь необходимой температуры.
  • Встроенный вентилятор, разгоняющий прогретый воздушный поток по всей территории.

Подключение

Поступление воздушных масс может осуществляться в одном из двух вариантов:

  • Левое выполнение: смесительный узел и автоматическое управление устанавливаются с левой стороны, подача воды производится сверху, отток — в нижней части.
  • Правое выполнение: указанные механизмы находятся справа, трубка для подачи воды — внизу, «обратка» – в верхней части.

Трубки размещают на той стороне, где установлен воздушный клапан.

Водяные калориферы разделяются на 2 вида по типу вентиля:

  • двухходовой – при подключении к общему теплоснабжению;
  • трехходовой – при замкнутом способе снабжения теплом (к примеру, при подключении к котлу).

Вид вентиля определяется характеристиками системы, снабжающей теплом. К ним относятся:

  • Вид системы.
  • Температура воды в начале процесса и при оттоке.
  • При центральном водоснабжении – разница между давлением в трубах подачи воды и её оттока.
  • При автономном – наличие или отсутствие насоса, установленного на контуре притока.

Схема установки должна предусматривать недопустимость монтажа в следующих случаях:

  • с вертикальным вводом и выводом трубы;
  • с верхним забором воздуха.

Такие ограничения обусловлены возможностью попадания снежных масс в приток оборудования и дальнейшей протечки талой воды в электронный блок.

Чтобы избежать сбоев работы блока автоматики, датчик температуры должен находиться во внутренней части элемента выдува воздуха на расстоянии не менее 0,5 м от механизма притока.

Методы обвязки

Обвязка представляет собою каркас из арматуры, с помощью которого регулируется поступление горячей воды. Узел обвязки помогает контролировать производительность калорифера приточной вентиляции, управлять им и поддерживать в здании заданный температурный режим.
Расположение узлов обвязки определяется местом установки, схемой воздухообмена, техническими параметрами оборудования. Применяют 2 варианта монтажа:

  • Рециркуляционные воздушные массы смешиваются с приточными.
  • Осуществляется только рециркуляция воздуха внутри помещения по замкнутому принципу.

С учётом этого существуют 2 метода обвязки:

  • 2-ходовыми вентилями – при неконтролируемом обратном расходе воды;
  • 3-ходовыми вентилями – при контроле за расходом воды в бойлерной или котельной.

Некоторые производители — например, «Интеграция» — выпускают узлы обвязки различной модификации, представляющие собою целые комплекты, состоящие из клапанов (балансировочных и обратных, двух и трёхходовых), насосов, байпасов, шаровых кранов, манометров, очистительных фильтров.

Читайте также:  Реквизиты документа по установке газовой колонки в квартире

Если естественная вентиляция налажена хорошо, то возможностей для успешной работы оборудования гораздо больше. Правильный выбор обвязки в таких случаях эффективен, как для нагрева больших площадей на производстве, так и для частных домов, коттеджей.

Калорифер, используемый для вентиляции, обычно подключают к системе отопления непосредственно в точке воздухозабора. Если действует принудительная вентиляция, то монтаж воздухонагревателя может быть проведён в любом месте.
Калориферы для приточной вентиляции позволяют создать комфортный температурный режим как в промышленных, так и в жилых помещениях. Важно только правильно определиться с выбором теплоносителя, который будет наиболее эффективным (с минимальными затратами при максимальной производительности) в определённых условиях. Автоматизированная система – как, например, щит управления приточной вентиляцией с водяным калорифером, — позволит сделать использование нагревательных приборов для приточной вентиляции удобным и безопасным.

Расчёт водяного калорифера

Расчёт мощности калорифера, необходимой для обогрева конкретного помещения, проводят с учётом таких данных, как:

  1. Объём (масса) приточного воздуха, который необходимо нагреть.
  2. Начальная (внешняя) температура воздушных масс.
  3. Целевая температура, до которой необходимо разогреть воздух перед подачей в комнату.
  4. Температурный режим теплоносителя.

Расчёт калорифера производят исходя из площади поверхности подогрева и нужной мощности. Для каждой операции применяется своя формула. Рассчитать мощность калорифера можно только с учётом реальных данных в конкретных условиях, среди которых наиболее важные:

  • способ подключения (к центральной теплосети или котельной);
  • метод обвязки.

Расчёт мощности калорифера

Qт – тепловая мощность калорифера, Вт;
L – расход воздуха, м³/час
ρвозд – плотность воздуха. Плотность сухого воздуха при 15 °C на уровне моря составляет 1,225 кг/м³;
свозд – удельная теплоёмкость воздуха, равная 1 кДж/(кг∙К)=0,24 ккал/(кг∙°С);
tвн – температура воздуха на выходе из калорифера, °C;
tнар – температура наружного воздуха, °C (температура воздуха наиболее холодной пятидневки обеспеченностью 0,92 согласно СП 131.13330.2012)

Калькулятор расчёта мощности калорифера

Расход теплоносителя на калорифер


G — расход воды на теплоснабжение калорифера, кг/ч;
3,6 — коэффициент перевода Вт в кДж/ч (для получения расхода в кг/ч);
Qт – тепловая мощность калорифера, Вт;
св – удельная теплоёмкость воды, равная 4,187 кДж/(кг∙К)=1 ккал/(кг∙°C);
tпр – температура теплоносителя (прямая линия), °C;
tобр – температура теплоносителя (обратная линия), °C.

Калькулятор расхода теплоносителя на калорифер

Диаграмма процесса нагрева воздуха

Определить потребную мощность калорифера можно с помощью специальных диаграмм. Количество необходимой энергии (Джоулей) для нагрева 1 килограмма воздуха производится с помощью i–d диаграммы влажного воздуха. Расчёт производится при условии, что процесс нагрева воздуха протекает при d = const (при неизменном влагосодержании). Далее, с учётом расчётного расхода воздуха, перевода единиц (Дж/с в кВт), определяется мощность калорифера.

Для получения точных данных можно воспользоваться онлайн-калькуляторами, с помощью которых можно узнать показатель мощности, указав производительность и температуру. Так как производительность установки в результате постепенного износа может снижаться, рекомендуется заложить в расчёт запас мощности от 5 до 15%.

Достоинства и недостатки водяных калориферов

Калорифер водяной для приточной вентиляции имеет существенные минусы, ограничивающие его применение в жилых помещениях:

  • большие габариты;
  • сложность подключения к общей системе горячего водоснабжения;
  • необходимость жёсткого контроля температуры теплоносителя в системе водоснабжения.

Однако, для создания комфортной температуры в больших помещениях (производственных цехах, теплицах, торговых центрах), применение таких нагревательных установок является наиболее удобным, эффективным, экономичным.

Водяной калорифер не нагружает электросеть, его поломка не спровоцирует возгорание – эти факторы делают использование оборудование безопасным.

Установка калориферов

Классификация калориферов

Лекция №14 Устройства для нагревания воздуха

14.1. Классификация калориферов

14.2. Установка калориферов

14.3. Расчет калориферов

Нагревание воздуха в системах вентиляции и кондиционирования осуществляется:

а) в калориферах;

б) при контакте воздуха с нагретой водой;

в) при смешивании с горячим воздухом.

В двух последних случаях происходит изменения (повышение) влагосодержания воздуха.

Нагревательный прибор, предназначенный только для нагрева воздуха, без изменения влагосодержания, называют калорифером.

По виду теплоносителя калориферы могут быть огневыми, водяными, паровыми и электрическими.

Наибольшее распространение имеют водяные и паровые калориферы, которые подразделяют на гладкотрубные и ребристые; последние, в свою очередь, подразделяются на пластинчатые и спирально- навивные.

По направлению движения потока теплоносителя различают одноходовые и многоходовые калориферы.

Схема установки калориферов по воздуху выбирается, исходя из того, чтобы массовая скорость воздуха в живом сечении калорифера была в пределах=4-8 кг/(с . м 2 ). Схема установки по воздуху может быть параллельной и последовательной. В первом случае воздух встречает на пути сопротивление только одного калорифера при сравнительно небольшой скорости, а во втором случае он преодолевает сопротивление нескольких последовательно расположенных калориферов при значительно большей скорости, чем в первом случае (так как живое сечение для прохода воздуха меньше).

Из теории теплообмена известно, что с увеличением скорости среды увеличивается коэффициент теплообмена. Таким образом, если сравнивать схемы установки калориферов по воздуху, то с одной стороны мы имеем относительно низкое сопротивление проходу воздуха, но и низкую интенсивность теплообмена (параллельная установка) и, с другой стороны, высокое сопротивление, но и высокую интенсивность теплообмена. В связи с этим параллельная установка применяется тогда, когда требуется нагреть большое количество воздуха на небольшую разность температур, а последовательная необходима для большей степени нагрева воздуха.

В калориферной установке приточной камеры все калориферы должны быть одинаковыми по типу, модели и номеру.

Для регулирования теплоотдачи калорифера и изменения температуры нагрева предусматривают устройство обводного клапана. При применении теплоносителя пара установка обводного канала обязательна, т.к пар не поддается качественному регулированию (высока вероятность замерзания). При теплоносителе воде установка обводного канала возможна, но необязательна.

Обвязка калориферов трубопроводами осуществляется по двум схемам –последовательно и параллельно.

При теплоносителе паре применяется только параллельная схема обвязки.

При теплоносителе вода для увеличения теплоотдачи и уменьшения площади нагрева следует отдавать предпочтение последовательной схеме движения воды по трубкам, при которой скорость воды составляет 0,2-0,4 м/с , однако нужно учитывать, что при дальнейшем увеличении скорости воды теплоотдача увеличивается незначительно, а гидравлическое сопротивление резко возрастает.

При определенных условиях (недостаточная скорость движения воды или недостаточное давление пара) возможно замерзание калориферов. Для предотвращения этого необходимо принимать поверхность нагрева без излишнего запаса и достаточную скорость движения воды в трубках, предусматривать утепленный клапан.

Расчет площади поверхности нагрева калориферов систем вентиляции и кондиционирования воздуха, совмещенных с воздушным отоплением и запроектированных для подачи наружного воздуха в количествах, необходимых для вентиляции в течении холодного периода года, следует производить принимая расчетные параметры Б. Действительный расход тепла, подводимого к калориферу, определяется по сумме расхода тепла на отопление и вентиляцию, соответствующих расходу при расчетной температуре наружного воздуха в холодный период года по расчетным параметрам Б.

Калориферы первого подогрева систем кондиционирования воздуха и приточных вентиляционных систем с увлажнением приточного воздуха при теплоносителе воде нужно проверить на режимы эксплуатации, соответствующие наружной температуре и температурам в точках излома графика температур воды в тепловых сетях, и на температуру воды на выходе из калорифера.

Для нагрева воздуха как правило. применяют биметаллические и стальные пластинчатые калориферы, обогреваемые паром или водой.

При теплоносителе воде для первоначального регулирования могут устанавливаться обводные клапаны с ручным управлением. При определении размера обводного клапана исходят из условия: потеря давления в клапане при пропуске через него всего воздуха должна равняться потере давления в калориферах.

При теплоносителе паре для регулирования температуры воздуха необходимо устанавливать перед калориферами сдвоенные клапаны (регулируемые автоматически или вручную), которые при открывании обвода прикрывают проход воздуха через калорифер.

При теплоносителе воде для предупреждения замерзания воды в калориферах, нагревающих воздух с температурой — 3 °С и ниже, следует:

· скорость воды в трубках калориферов принимать не менее 0,12 м/с при расчетной температуре наружного воздуха по параметрам Б и при 0°С;

· калориферы с вертикальными трубками устанавливать строго вертикально, а с горизонтальными – строго горизонтально во избежание скопления в них воздуха;

· калориферы соединять по прямоточно-перекрестной схеме: подавать теплоноситель в первый ряд калориферов по ходу воздуха и удалять из последнего ряда, хотя это в какой-то мере ухудшает теплоотдачу калориферов;

· тепловой поток выбранного калорифера принимать не превышающим расчетный более чем на 10%;

· во всех верхних точках обвязки калориферов (при теплоносителе воде) ставить воздухосборники, а не воздушные краны;

При теплоносителе паре для предупреждения замерзания конденсата в калориферах, нагревающих воздух с температурой — 3 °С и ниже, тепловой поток выбранного калорифера устанавливать не превышающим расчетный более чем на 10% и предусматривать:

· установку конденсатоотводчиков не менее чем на 300 мм ниже патрубков калориферов, из которых стекает конденсат;

· удаление конденсата от конденсатоотводчиков самотеком до сборных баков;

· автоматическое прерывание вакуума внутри калориферов, возникающее в результате дросселирования подачи пара и его конденсации при температурах ниже 100°С.

В северной строительно-климатической зоне для предупреждения замерзания воды в калориферах в дополнение к мерам защиты, допускается при соответствующем обосновании применять калориферы для подогрева рециркуляционного воздуха или устраивать обводной воздуховод с калорифером для частичного подогрева наружного воздуха перед поступлением его в основные калориферы системы.

Калориферные установки следует проектировать составляя их из минимального числа калориферов с арматурой, обеспечивающей регулирование производительности по теплу.

При работе на теплоносителе воде необходимо предусматривать возможность независимого отключения и опорожнения отдельных калориферов, рядов или групп калориферов (на больших установках).

В многорядных калориферных установках, работающих на паре, запорную арматуру рекомендуется размещать так, чтобы можно было выключать отдельные ряды калориферов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8623 – | 7455 – или читать все.

194.79.20.244 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Виды устройств и особенности установки калориферов

Обеспечить доступ воздуха в жильё в тёплое время года довольно просто, если приточная вентиляция снабжена достаточной мощности вентилятором. Но зимой, когда на улице температура доходит до -20, необходимо радикально изменить взгляд на вентиляционную систему. Первым делом рекомендуется обратить внимание на калориферы для приточной вентиляции. Это устройство возьмёт на себя заботу об организации доступа тёплого воздуха в жильё.

Виды калориферов

Выбор данных устройств основывается на нескольких параметрах, в числе которых мощность, размеры помещения, производительность, климатические условия местности. Учитывая все характеристики, рекомендуется приобрести один из существующих видов:

  • электрические калориферы для приточной вентиляции;
  • водяные устройства.

Конструкция электрических приборов данного целевого назначения основана на преобразовании электрической энергии в тепловую. Это обеспечивается посредством нагрева проволочной спирали или металлической нити, в результате чего тепло передается проходящему через такую установку воздушному потоку. Достоинством подобных устройств является их доступность и простота монтажа. Однако явным недостатком можно назвать высокий уровень энергопотребления. Даже с учетом того, что по этой причине электрокалориферы для приточной вентиляции чаще всего используются в небольших помещениях, расход энергии будет ощутимым.

Из-за этой особенности рекомендуется такой нагреватель использовать в совокупности с рекуператором. Это на четверть позволит снизить расход электричества ввиду особенности конструкции такого оборудования. Рекуператор пропускает через себя два потока воздуха: приточный и вытяжной, при этом они не смешиваются, позволяя приточному воздуху оставаться чистым и свежим. Но ввиду особенного устройства между ними происходит теплообмен, что позволяет дополнительно прогревать приточный воздух без расхода электроэнергии.

Читайте также:  Когда нужна гидрострелка к распределительному коллектору?

Самостоятельная работа рекуператора малоэффективна в холодное время года. Однако когда одновременно используется такой агрегат и калорифер для вентиляции, то подобная система близка к максимально эффективной. Как правило, данный тип нагревателя предусматривает наличие в конструкции узла, обеспечивающего защиту от перегрева.

Учитывая, что калориферы в холодное время года нередко работают практически без остановки, риск чрезмерного нагрева очень велик. Поэтому при выборе типа устройства рекомендуется обращать внимание на наличие защитных функций.

Водяной калорифер для вентиляции с финансовой стороны является более приемлемым вариантом. К тому же его производительность достаточна и при использовании в крупных помещениях. Это обеспечивается особенностями конструкции, так как нагрев воздуха происходит в перпендикулярной приточному воздушному потоку плоскости. Такая схема работы нагревателя довольно эффективна. Но приточная вентиляция с водяным калорифером имеет и свои недостатки – при низких температурах есть риск обмерзания, так как работа устройства базируется на перетоке воды. Поэтому в подобных конструкциях предусмотрена система защиты от обледенения.

Особенности устройства калориферов

Учитывая тип сечения воздуховодов: круглое или квадратное, можно подобрать тип калорифера. Наилучшим вариантом является установка данного устройства перед вентилятором. Такая схема работы обеспечит максимальную эффективность: воздух, проходя через систему фильтрации, расположенную на входе, достигает калорифера, где, прогреваясь, потоком необходимой мощности вбрасывается в помещение.

Важность наличия калорифера оговаривается санитарными нормами для помещений, с учётом которых температура воздуха на входе вентиляционной системы не должна быть ниже 15 градусов. Поэтому рекомендуется организовать вентиляционную систему таким образом, чтобы одним из узлов в ней был нагреватель.

Выбор типа конструкции подразумевает расчёт калорифера вентиляции. Определение мощности данного устройства не требует сложных манипуляций и вычислений. Для этого необходимо располагать данными температуры воздуха на входе и выходе калорифера (учитывается значение воздуха на улице и на выходе вентиляционной системы). Если воздух снаружи помещения удерживается на минимальной отметке кратковременно, то можно пренебречь пиковым значением температуры, тогда мощность устройства можно брать в расчёт несколько меньшего значения.

Расчёт мощности калорифера вентиляции также подразумевает получение дополнительных данных по воздухообмену в помещении. Данный параметр определяет производительность вентиляционной системы и измеряется в м3/час. Эти два параметра умножаются на объёмную теплоёмкость воздуха, затем полученное значение делится на 1 000. После того, как была определена мощность калорифера, необходимо, чтобы данное значение соответствовало напряжению сети. Так, для корректной работы устройства мощностью 4 и выше кВт необходимо, чтобы подключение было трёхфазным, что подразумевает напряжение 380 В.

Из-за несоответствия данных параметров нагреватель очень быстро перестанет функционировать и вскоре понадобится ремонт калорифера вентиляции. Также одной в числе прочих неисправностей числится длительная работа устройства без регулярного технического обслуживания или же нарушение элементарных правил эксплуатации подобной техники. В любом случае поломка калорифера вовсе не означает, что вентиляционная система теперь никогда не будет полноценно функционировать. Существует немало сервисов, которые за короткое время починят неполадки любой сложности и характера. Разумеется, работу мастера придётся оплатить.

Самостоятельно устранять поломку не рекомендуется тем, кто не имеет узкоспециального образования, а также опыта работы с электрооборудованием. В противном случае можно ещё больше навредить и дополнительно к тому подвергнуть свою жизнь опасности.

Системы теплоснабжения приточных установок

Приточные системы вентиляции , как правило, включают в себя одну или две—три ступени нагрева воздуха в зимний период. Нагрев наружного приточного воздуха осуществляется в теплообменниках-калориферах, которым подведены трубопроводы системы теплоснабжения. Главной задачей системы теплоснабжения является обеспечение заданной температуры приточного воздуха, вне зависимости от наружной температуры либо параметров теплоносителя источника тепла.

При подборе калориферов практически все проектировщики сталкиваются с ситуацией, когда производитель предлагает определенный типоразмер воздухонагревателя, который подбирается с некоторым запасом. Если подключать систему теплоснабжения к калориферу напрямую, без узла регулирования и системы автоматики, то температура приточного воздуха на выходе с калорифера не будет в расчетных диапазонах, а будет максимальной исходя из входных параметров. Такие ситуации приводят к перерасходу количества тепла выше расчетного, к некомфортным условиям внутреннего воздуха. Следовательно, суть системы теплоснабжения приточных установок сводится к выбору типа узлов регулирования.

Разновидности узлов обвязки калориферов

С двухходовым клапаном — происходит количественное регулирование, то есть расход воды из тепловой сети регулируется двухходовым клапаном, установленным на обратном трубопроводе, в зависимости от потребности в нагреве. На внутреннем контуре устанавливается циркуляционный насос, который вне зависимости от состояния регулирующего клапана обеспечивает постоянную циркуляцию теплоносителя на калорифере через перемычку. Это необходимо для предотвращения остывания теплоносителя в калорифере в зимний период, что может угрожать разморозкой.
С трехходовым клапаном, работающим на перекрытие потока теплоносителя со стороны теплосети, без перемычки на калорифере. Порт со стороны источника теплоснабжения открывается или закрывается в зависимости от сигнала системы автоматизации. Циркуляционный насос на внутреннем контуре регулирующего узла работает либо на подмес воды от источника при открытом клапане, либо через перемычку самого клапана при закрытом патрубке. Такая схема также относится к количественному регулированию. Недостатком такой схемы является увеличение напора насоса на величину сопротивления регулирующего клапана в открытом состоянии.
С трехходовым клапаном, работающим на перепуск потока горячей воды в обратный трубопровод тепловой сети. При потребности в нагреве воздуха в калорифере порт регулирующего клапана входит в режим «открыто», циркуляция теплоносителя идет через калорифер на прямых параметрах. В случае, когда температура достигла уставки, система автоматики начинает закрывать порт клапана со стороны калорифера, тем самым осуществляя перепуск теплоносителя из подачи в обратный трубопровод. Циркуляция на нагревателе осуществляется циркуляционным насосом через перемычку во внутреннем контуре.

Принцип выбора схемы регулирования в зависимости от источника тепла

В зависимости от того к какому источнику теплоснабжения подключаются узлы регулирования приточных установок на стадии проектирования определяется выбор схемы узлов обвязки калориферов.

Так, например, если источником тепла является центральная водогрейная котельная, работоспособность оборудования которой не зависит от минимальной температуры возвращаемого теплоносителя, выбор останавливают на простейшей схеме регулирования № 3. В этом случае система теплоснабжения работает в стандартном режиме на постоянном расходе теплоносителя, что защищает контур котельных установок от перегрева и выхода из строя.

Схема №2 используется, если источником тепла являются тепловые сети с независимым подключением системы теплоснабжения при помощи пластинчатого теплообменника, а в сети поддерживается давление соответствующее рабочему давлению трехходового клапана. При этом сетевой насос на внутреннем контуре пластинчатого теплообменника должен иметь встроенный или внешний частотный преобразователь, для корректировки расходных параметров в контуре. Также данную схему можно применять при зависимом или независимом подсоединении к котельной при условии частотного регулирования сетевых насосов контура вентиляции.

Схема №1 является наиболее универсальной схемой регулирования в узлах обвязок калориферов, но при этом и самая дорогая, так как двухходовые седельные клапаны, как правило, в несколько раз дороже трехходовых. Такая схема идеально подходит для зависимого присоединения к тепловым сетям, так как происходит контроль минимальной температуры обратного теплоносителя, перепад давления со стороны теплоносителя позволяет подбирать клапан с наименьшим коэффициентом Kv, что позволяет системе и автоматике максимально быстро реагировать на потребность калориферов в тепловой мощности.

Подбор основного оборудования для узлов теплоснабжения калориферов

Основное условие корректной работы узла обвязки воздухонагревателя — это соответствующий выбор схемы регулирования, правильный подбор регулирующего клапана и циркуляционного насоса.

Подбор регулирующих клапанов

Основными характеристиками регулирующих клапанов как двухходовых так и трехходовых являются диаметр, рабочее и максимальное давление и температура, а также главный коэффициент Kv.

Kv — это коэффициент пропускной способности клапана, означает как расход клапан способен пропустить через себя в открытом состоянии при потерях давления на нем 10 метров водяного столба.

При известном расходе теплоносителя и допустимом перепаде давления перед узлом по формуле определяется коэффициент Kv и в дальнейшем принимается ближайшее большее значение из каталога производителя. Также вместо расчета коэффициента по формулам можно воспользоваться номограммами подбора клапанов, которые каждый производитель разрабатывает под свой ассортимент регулирующей арматуры.

Правильность подбора можно определить сравнением с диаметром трубопроводов: клапан всегда должен быть меньшим диаметром. Чем меньше диаметр клапана, тем быстрее система регулирует на незначительные колебания температур воздуха или теплосети.

Подбор циркуляционных насосов

Циркуляционные насосы внутреннего контура калориферов подбираются также исходя из принятой схемы регулирования с учетом расчетного расхода теплоносителя и сопротивления регулируемого участка.

Под сопротивлением регулируемого участка принято понимать следующий объем арматуры и трубопроводов:

  1. Схема регулирования №1 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу до двухходового клапана, потери давления на обратных клапанах и фильтрах-грязевиках при рабочем засорении. Потери давления на клапане в расчет напора насоса не берутся, т. к. в данной схеме клапан работает на перепаде давления теплосети.
  2. Схема регулирования №2 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу до трехходового клапана, сопротивление трехходового клапана через байпасную линию, потери давления на арматуре.
  3. Схема регулирования №3 — гидравлические потери давления на воздухонагревателе при расчетном расходе теплоносителя, потери по длине трубопроводов с учетом местных сопротивлений на участке от портов присоединения к калориферу через внутреннюю перемычку, потери давления на арматуре.

Как видно напор насоса при равных начальных условиях в 1 и 3-й схеме регулирования меньше, чем во 2-й схеме.

При известном расходе теплоносителя и рассчитанному напору, то есть рабочей точке насоса по графикам производят подбор серии и модели насоса. При подборе трехскоростных циркуляционных насосов аналогичных 100-й серии Grundfos – UPS, рекомендуется подбор выполнять на средней скорости.

Мы сотрудничаем с крупнейшими Российскими и Европейскими производителями, что позволяет предлагать максимально выгодные решения с точки зрения капитальных и эксплуатационных затрат.

В отдельных случаях – при заключении контракта на поставку крупного инженерного оборудования мы готовы выполнить разработку рабочего проекта Бесплатно.

Мы не навязываем оборудование собственного производства, мы предлагаем варианты решения Вашей инженерной задачи по открытой, обоснованной цене, на базе передовых решений и опыта.

С уважением, генеральный директор ООО «Регион»
Щукин Алексей Владимирович

Телефон для связи: +7 (812) 627-93-38

P/S. от директора компании ООО «Регион»:
Работаем по всей России Контакты. Тел/ф + 7(812) 627-93-38; info@dc-region.ruАвтор G+
Связаться с нами вы можете с 9.00 – 18.00 (пнд – пят).
Наш специалист всегда ответит на Ваши вопросы
и проконсультирует по возможным решениям тех или иных задач
по телефону или по запросу на почту market@dc-region.ru.
+7 (931) 350 04 34
+7 (911) 088 95 67
+7 (963) 306 04 27
по номеру +7 (911) 130 08 19
Наш Skype: dc-region
Наш Telegram: dc_region

Мы в социальных сетях

Проектирование жилых, гражданских и промышленных зданий и сооружений,
в том числе очистных сооружений и инженерных сетей и систем. По всей России.

Виды калориферов для приточной вентиляции и их устройство

Организовать оптимальный доступ чистого и свежего воздуха в жилые помещения, особенно в теплое время года – довольно простая задача. Для этого лишь необходимо оснастить приточную систему вентилятором с достаточной мощностью. Однако в холодное время года установка вентилятора нецелесообразна по ряду причин. В таком случае специалисты рекомендуют обратить внимание на калориферы для приточной вентиляции, которые возьмут на себя заботу об установлении благоприятного микроклимата и свободного доступа теплого воздуха в помещение.

О том, что собой представляют калориферы, какими они бывают и по какому принципу работают, мы расскажем в этой статье.

Что это такое и для чего нужен?

Калорифер – это специальное устройство, предназначенное для обеспечения теплообмена за счет нагревания воздушного потока с помощью соприкосновения его с определенным количеством нагревающих элементов.

Устанавливается такой агрегат в вентиляционных системах как в комплексе с моноблочными конструкциями, так и в виде отдельно стоящих модулей.

Как работает и устройство?

В зависимости от того, какой источник тепла используется, калориферы подразделяются на водяные, электрические и паровые.

Реберная структура устройства представляет собой металлические пластины, насаженные на трубки, либо навитую на них ленту или тонкую проволоку.

Принцип действия калориферов основан на том, что теплоноситель имеет больший коэффициент теплоотдачи по отношению к потокам воздуха.

Энергоэффективность калорифера зависит от коэффициента теплоотдачи устройства при определенных энергозатратах. Иными словами, чем больше тепла агрегат способен отдать при неизменных энергетических затратах, тем выше его эффективность.

Устройство способно значительно нагреть проходящие через него воздушные потоки – поднять их температуру на 70-110 градусов, поэтому использовать калорифер можно даже при минимальных температурах (до -25 градусов).

Электрический калорифер: принцип работы

Для маломощных вентиляционных систем экономически обоснованным решением является использование электрического калорифера, так как установка такого агрегата не требует подведения сложных коммуникаций – достаточно лишь подключить прибор к линии электроснабжения.

Для более эффективного теплообмена с окружающим воздухом электрические калориферы оборудуются трубчатыми электронагревателями.

Навесные и настенные

В последние годы особой популярностью пользуются навесные (настенные) конвекторы, основанные на работе электрических калориферов.

Состоит калорифер из металлического корпуса, внутри которого размещены нагревательные элементы. Работа этих элементов управляется механическим или электронным термостатом. Сам нагревательный элемент включает в себя проводник большого сопротивления, помещенный в термостойкий керамический корпус. При этом трубчатый электронагреватель герметически запаивается в алюминиевый или металлический корпус, которые выполняется в эргономичной форме радиатора с:

  • крыльями
  • отводными пластинами
  • аэродинамическими вставками.

Температура включенного трубчатого электронагревателя может колебаться от 600 до 1000 градусов. Основное достоинство электрического конвектора заключается в том, что он не сжигает кислород и не пересушивает воздух.

Электрокалорифер канальный

Канальные калориферы представляют собой оборудование для нагревания воздуха, состоящее из труб, по которым циркулирует горячая вода, воздух или пар. Встраиваются канальные нагреватели непосредственно в воздуховоды (вентиляционные каналы). По принципу передачи тепловой энергии устройства бывают электрическими и водяными. В зависимости от сечения и конфигурации вентиляционной системы воздухонагреватели бывают круглой и прямоугольной формы.

Кроме того, существуют канальные нагреватели и с функцией рекуперации (утилизации тепла). В таком случае холодный приточный воздух нагревается посредством теплообмена с устраняемым теплым воздухом. Смешения воздушных потоков при этом не происходит.

Промышленные электрокалориферы: производители и популярные модели

Наиболее популярными моделями промышленных электрокалориферов являются следующие устройства:

  • «TDE 25»:
    • производитель: «Trotec GmbH & Co. KG» (Германия);
    • мощность нагрева: 3 000 Ватт;
    • расход воздуха: 250 м 3 /ч;
    • сборка: переносной.

  • «F-LUX series»:
    • производитель: «Systema» (Италия);
    • мощность нагрева: от 12 800 до 37 000 Ватт;
    • сборка: настенный.

Принцип работы водяного калорифера

Применение водяных калориферов является наиболее экономичным решением для обслуживания помещений более 150 квадратных метров, так как подведение линии центрального отопления не является высокозатратной задачей. Температуры воды в таком устройстве может достигать 180 градусов.

Необходимо отметить, что стоимость электрических калориферов несколько выше стоимости водяного оборудования, хотя в последнем случае требуется установка специального узла обвязки, состоящего из управляющего модуля, циркуляционного насоса, арматурой для трубопровода и трехкодового клапана. Установка узла обвязки позволяет не только контролировать производительность калорифера, но и предохранять его замерзания в холодное время года.

Производители калориферов в России

Основными производителями калориферов в России являются такие организации, как:

  • «Салма» (город Псков, Псковская область) — www.psksalma.ru;

  • «Делсот» (город Миасс, Челябинская область) — www.delsot.ru;

  • «Костромской Калориферный завод» (город Кострома, Костромская область) — www.kkz.ru.

Калориферы КСК: классификация и технические характеристики

Рассмотрим наиболее популярные модели водяных калориферов:

  • калорифер «КСК 2-2»:
    • тип: двухрядный;
    • производительность по теплу: 31 кВт;
    • производительность по воздуху: 2 500 м 3 /ч;
    • поверхность теплового обмена: 8,3 м 2 ;
    • сечение для прохода теплоносителя: 0, 00056 м 2 ;
    • фронтальное сечение: 0,244 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 3-3»:
    • тип: трехрядный;
    • производительность по теплу: 60 кВт;
    • производительность по воздуху: 3 150 м 3 /ч;
    • поверхность теплового обмена: 15,2 м 2 ;
    • сечение для прохода теплоносителя: 0, 00101 м 2 ;
    • фронтальное сечение: 0,290 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 3-6»:
    • тип: трехрядный;
    • производительность по теплу: 50,2 кВт;
    • производительность по воздуху: 2 500 м 3 /ч;
    • поверхность теплового обмена: 13,4 м 2 ;
    • сечение для прохода теплоносителя: 0,00077 м 2 ;
    • фронтальное сечение: 0,267 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 3-7»:
    • тип: трехрядный;
    • производительность по теплу: 65 кВт;
    • производительность по воздуху: 3 150 м 3 /ч;
    • поверхность теплового обмена: 16,6 м 2 ;
    • сечение для прохода теплоносителя: 0,00077 м 2 ;
    • фронтальное сечение: 0,329 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 3-8»:
    • тип: трехрядный;
    • производительность по теплу: 83 кВт;
    • производительность по воздуху: 4 000 м 3 /ч;
    • поверхность теплового обмена: 20 м 2 ;
    • сечение для прохода теплоносителя: 0,00077 м 2 ;
    • фронтальное сечение: 0,392 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 3-9»:
    • тип: трехрядный;
    • производительность по теплу: 103,1 кВт;
    • производительность по воздуху: 5 000 м 3 /ч;
    • поверхность теплового обмена: 23,2 м 2 ;
    • сечение для прохода теплоносителя: 0,00077 м 2 ;
    • фронтальное сечение: 0,455 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 3-10»:
    • тип: трехрядный;
    • производительность по теплу: 135,2 кВт;
    • производительность по воздуху: 6 300 м 3 /ч;
    • поверхность теплового обмена: 29,6 м 2 ;
    • сечение для прохода теплоносителя: 0,00077 м 2 ;
    • фронтальное сечение: 0,581 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 3-11»:
    • тип: трехрядный;
    • производительность по теплу: 360 кВт;
    • производительность по воздуху: 16 000 м 3 /ч;
    • поверхность теплового обмена: 86,3 м 2 ;
    • сечение для прохода теплоносителя: 0,00235 м 2 ;
    • фронтальное сечение: 1,660 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 3-12»:
    • тип: трехрядный;
    • производительность по теплу: 556,4 кВт;
    • производительность по воздуху: 25 000 м 3 /ч;
    • поверхность теплового обмена: 130,1 м 2 ;
    • сечение для прохода теплоносителя: 0,00355 м 2 ;
    • фронтальное сечение: 2,488 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 4-6»:
    • тип: четырехрядный;
    • производительность по теплу: 59 кВт;
    • производительность по воздуху: 2 500 м 3 /ч;
    • поверхность теплового обмена: 17,6 м 2 ;
    • сечение для прохода теплоносителя: 0,00102 м 2 ;
    • фронтальное сечение: 0,267 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 4-7»:
    • тип: четырехрядный;
    • производительность по теплу: 76 кВт;
    • фронтальное сечение: 0,329 м 2 ;
    • производительность по воздуху: 3 150 м 3 /ч;
    • поверхность теплового обмена: 21,8 м 2 ;
    • сечение для прохода теплоносителя: 0,00102 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 4-8»:
    • тип: четырехрядный;
    • производительность по теплу: 97,0 кВт;
    • производительность по воздуху: 4 000 м 3 /ч;
    • поверхность теплового обмена: 26,2 м 2 ;
    • сечение для прохода теплоносителя: 0,00102 м 2 ;
    • фронтальное сечение: 0,392 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 4-9»:
    • тип: четырехрядный;
    • производительность по теплу: 120,4 кВт;
    • производительность по воздуху: 5 000 м 3 /ч;
    • поверхность теплового обмена: 30,4 м 2 ;
    • сечение для прохода теплоносителя: 0,00102 м 2 ;
    • фронтальное сечение: 0,455 м 2 ;
    • количество ходов по теплоносителю: 6.
  • калорифер «КСК 4-10»:
    • тип: четырехрядный;
    • производительность по теплу: 157,2 кВт;
    • производительность по воздуху: 6 300 м 3 /ч;
    • поверхность теплового обмена: 39,0 м 2 ;
    • сечение для прохода теплоносителя: 0,00102 м 2 ;
    • фронтальное сечение: 0,581 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 4-11»:
    • тип: четырехрядный;
    • производительность по теплу: 417,3 кВт;
    • производительность по воздуху: 16 000 м 3 /ч;
    • поверхность теплового обмена: 114,2 м 2 ;
    • сечение для прохода теплоносителя: 0,00312 м 2 ;
    • фронтальное сечение: 1,660 м 2 ;
    • количество ходов по теплоносителю: 4.
  • калорифер «КСК 4-12»:
    • тип: четырехрядный;
    • производительность по теплу: 648,1 кВт;
    • производительность по воздуху: 25 000 м 3 /ч;
    • поверхность теплового обмена: 172,5 м 2 ;
    • сечение для прохода теплоносителя: 0,00471 м 2 ;
    • фронтальное сечение: 2,488 м 2 ;
    • количество ходов по теплоносителю: 4.

Газовый

Газовые калориферы представляют собой тепловые пушки, работающие на газовом топливе (сжиженном газе): пропан-бутановой смеси или метане (природном газе).

Газовые калориферы используются для обогрева больших площадей (от 100 до 600 квадратных метров).

Как правило, газовые устройства оснащаются жаропрочным стальным корпусом, который защищает внутренние элементы агрегата. Принцип работы такого калорифера основывается на полном сгорании сжиженного газа, в результате чего выделяется тепло. Газ поступает из баллона, нагревается от пламени горелки, практически целиком сгорает и смешивается с нагретым воздухом. За счет практически мгновенного смешения продуктов сгорания с нагреваемым воздухом газовые калориферы обладают КПД, близким к 100 процентам. За счет того, что газовые баллоны подключаются к устройству только на время работы и могут храниться отдельно, газовые калориферы считаются пожаробезопасным оборудованием.

На отработанном масле

Как известно, масло является калорийным углеводородным сырьем, из которого можно извлекать «бесплатную» энергию.

Внимание: При повторном использовании отработанное масло выделяет не меньше тепла, чем солярка.

Все дело в том, что утилизация отработанного масла для многих предприятий является серьезной проблемой, которая приносит немалые убытки за счет транспортных расходов и экологических сборов.

Отработанное масло даёт тепла не меньше, чем солярка. В настоящий момент КПД отопительных приборов, работающих на «вторичке» достигает 90-94 процентов. При сжигании 1 литра масла выделяется около 10-11 кВт тепла в час, что примерно равно показателю обычного дизельного топлива.

Если же сырье подвергалось предварительной очистке, то его энергоэффективность повышается еще на 20-25 процентов.

Стоимость калориферов зависит от множества параметров, в том числе от типа и производительности. Соответственно, чем мощнее агрегат, тем он дороже. При этом отечественные модели зачастую оцениваются дешевле иностранных. Именно поэтому точную цену конкретной модели калорифера необходимо уточнять непосредственно у продавца.

Как показывает практика, цены на калориферы начинаются от нескольких тысяч (бытовые модели) и заканчиваются несколькими сотнями тысяч рублей (промышленные модели).

Где купить калорифер для приточной вентиляции?

В Москве

В Москве продажей калориферов для приточной вентиляции занимаются такие компании, как:

  • «RuClimat»:
    • сайт: http://www.ruclimat.ru/;
    • адрес: город Москва, улица Дубнинская, дом 83, офис 617-618;
    • телефон: +7 (495) 645-83-97.
  • «MirCli»:
    • сайт: https://mircli.ru;
    • адрес: город Москва, Ленинградский проспект, дом 80, корпус Г;
    • телефон: +7 (495) 666-22-19.
  • «Венкор»:
    • сайт: http://www.vencore.ru/;
    • адрес: город Москва, улица Добролюбова, дом 2, строение 5;
    • телефон: +7 (495) 777-19-11.
  • «Cold System»:
    • сайт: http://cold-system.ru;
    • адрес: город Москва, улица Шоссейная, 29с2;
    • телефон: +7 (495) 204-19-02.
  • «ВентКомфорт»:
    • сайт: http://www.ventkomfort.ru;
    • адрес: город Москва, Проектируемый проезд, дом 5112;
    • телефон: +7 (495) 646-72-35.

В Санкт-Петербурге

В Санкт-Петербурге приобрести калориферы для приточной вентиляции можно в следующих организациях:

  • «ClimateUnion»:
    • сайт: http://www.climateunion.ru;
    • адрес: город Санкт-Петербург, улица Королева, дом 48, корпус 6;
    • телефон: +7 (812) 347-15-57.
  • «Теплоконтроль»:
    • сайт: http://www.climateunion.ru;
    • адрес: город Санкт-Петербург, проспект Елизарова, дом 34;
    • телефон: +7 (812) 244-13-40.
  • «Циклон СПБ»:
    • сайт: http://cyclonespb.ru;
    • адрес: город Санкт-Петербург, улица Коллонтай, дом 5;
    • телефон: +7 (812) 932-72-96.
  • «Нева Климат»:
    • сайт: http://nevaclimat.com;
    • адрес: город Санкт-Петербург, проспект Елизарова, дом 34, литера А;
    • телефон: +7 (812) 611-07-37.
  • «Благовест»:
    • сайт: http://www.blagovest-spb.ru;
    • адрес: город Санкт-Петербург, Большеохотинский проспект, дом 23;
    • телефон: +7 (812) 320-29-49.

Таким образом, установка грамотно подобранного калорифера для приточной вентиляции обеспечит не только приток свежего теплого воздуха в холодное время года, но и приятный микроклимат в обслуживаемом помещении. Именно поэтому к выбору устройства необходимо подходить со всей ответственностью, учитывая его тип и производительность, ведь только в этом случае получится приобрести не только эффективное, но и экономичное оборудование.

Ссылка на основную публикацию
×
×