Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Измерение параметров вентилятора в сети

К вентилятору, поставляемому для вентиляционной системы, обычно при­лагается паспорт с аэродинамической характеристикой, из которой можно опре­делить) какие полное и статическое давления должен давать вентилятор при заданной производительности.

Как в реальных условиях (на месте эксплуатации) можно измерить производительность вентилятора в реальной сети?

Полное давление вентилятора: р V = р20 — р10

р20 — полное давление на вы­ходе из вентилятора;

р10 — полное давление на входе вентилятора.

Статическое давление вентилятора: р SV = р2 — р10

р2 — статическое давле­ние на выходе из вентилятора.

Эти формулы внешне очень простые, и в большинстве случаев в лаборатор­ных условиях не возникает проблем с измерением аэродинамических характери­стик вентиляторов, если имеется четкая договоренность о содержании этих тер­минов и методах измерения указанных величин. Для этого существуют отечественные, зарубежные и международные стандарты методов измерений аэродинамических характеристик вентиляторов. Они в некоторых деталях мнут отличаться друг от друга, поэтому при рассмотрении аэродинамических характе ристик зарубежных вентиляторов необходимо выяснять из данных каталога условия и методику измерений, чтобы исключить возможные ошибки трактовки результатов. Так, например, в отечественных установках наиболее часто реализова ны испытаний А или С, когда скоростной напор на выходе определяется пересчетом из производительности вентилятора. В зарубежных установках встречается также, например, схема В, когда производится непосредственное измерение полного давления за вентилятором. С учетом неравномерных полей скоростей на выходе из вентилятора метод схемы В может дать несколько отли­чающиеся результаты по полному давлению вентилятора. Еще один пример. При испытаниях осевых вентиляторов площадь выхода может опр еделяться по диаметру рабочего колеса или по диаметру рабочего колеса за вычетом пло­шали втулки. При этом получаются разные площади выхода и, соответственно, разные полные давления вентилятора.

Если вентилятор уже установлен и присоединен к сети, то измерение его аэродинамических параметров (давления и производительности) может вызвать некоторые трудности. Рассмотрим ряд особенностей таких измерений.

Для определения давления вентилятора, во-первых, надо измерить полное дав­ление в воздуховоде перед вентилятором. Измерительное сечение формально должно находиться на расстоянии не менее 2D от входа вентилятора ( D — диаметр или гидравлический диаметр воздуховода). Кроме того, перед измерительным се­чением должен быть отрезок прямого воздуховода с невозмущенным течением длиной не менее 4 D ). Как правило, такие условия входа встречаются редко. Если перед входом в вентилятор расположено поворотное колено или кап либо другое устройство, нарушающее однородную структуру течения в измери­тельном сечении, то необходимо перед измерительным сечением устанавливать выравнивающий поток решетку (хонейкомб). Если измерительное сечение удовлетворяет требованиям измерений, то их можно выполнять в соответствии с описанной выше процедурой. С помощью вводимого в воздуховод приемника полного давления измеряются полные давления в ряде точек поперечного сече­ния, определяется соответствующее среднее значение полного давления в сечении. Если одновременно измерять скоростной напор, то можно определить производительность вентилятора, проинтегрировав полученные локальные рас­ходные скорости по площади измерительного сечения. Если вентилятор имеет свободный вход, то полное давление на входе р10 равно давлению окружающей среды (т. е. избыточное давление равно нулю).

Для измерения полного давления за вентилятором важно наиболее правильно выбрать положение измерительного сечения, поскольку структура потока на выходе из вентилятора неоднородна по сечению и зависит от типа вентилятора и режима его работы. Поле скоростей в поперечном сечении на выходе из вен­тилятора в ряде случаев может иметь зоны возвратных токов и, как правило, не­ стационарно во времени. Если в воздуховоде нет спрямляющих поток решеток, то неоднородности течения могут распространяться довольно далеко вниз по по­току (до 7—10 калибров). Если за вентилятором есть диффузор с большим углом раскрытия (отрывной диффузор) или поворотное колено, то течение после них также может быть очень неоднородно по сечению. Поэтому можно предложить следующую методику измерений. Одно измерительное сечение выбрать непо­средственно за вентилятором и подробно просканировать его зондом, измеряя полное давление и скоростной напор, и определить среднее полное давление и производительность вентилятора. Производительность сравнить с соответ­ствующей величиной, полученной по измерениям во входном измерительном сечении вентилятора. Дополнительное измерительное сечение выбрать на бли­жайшем после выхода прямолинейном участке воздуховода на расстоянии 4—6 калибров от начала этого участка (на максимально возможном расстоянии от начала участка, если длина его меньше). С помощью зонда измерить распре­деления по сечению полного давления и скоростного напора и определить сред­нее полное давление и производительность вентилятора. Из полученного полно­го давления вычесть расчетную величину потерь на отрезке воздуховода от выхода из вентилятора до измерительного сечения, это и будет полное давле­ние на выходе из вентилятора. Сравнить производительность вентилятора со значениями, полученными для входа в вентилятор и непосредственно на вы­ ходе. Обычно удовлетворительные для измерения производительности вентиля­тора условия проще обеспечить на входе, поэтому надо выбрать сечение на вы ходе, которое более соответствует по производительности входному сечению. В случае крышного вентилятора напорная сеть отсутствует, и измерения прово­дятся только на входе вентилятора. При этом скоростной напор на выходе из вен­тилятора полностью теряется, и для него измеряется характеристика только по статическому давлению.

Измерение аэродинамических параметров вентилятора сопряжено еще с одной трудностью — не стационарностью параметров потока. При пневмометрических измерениях для получения достоверных данных используют различ­ного рода демпферы — устройства, сглаживающие пульсации давления. На рынке измерительной техники существуют электронные манометры с математическим временным осреднением давления.

Вентпортал

Пример подбора вентиляторов для системы вентиляции

Опубликовано чт, 01/27/2011 – 12:26 пользователем editor

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Тип Скорость воздуха, м/с
Магистральные воздуховоды6,0-8,0
Боковые ответвления4,0-5,0
Распределительные воздуховоды1,5-2,0
Приточные решетки у потолка1,0-3,0
Вытяжные решетки1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Читайте также:  Подключение вытяжного вентилятора в ванной и туалете: разбор схем и советы по монтажу оборудования

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Расчет потери напора воздуха в системе вентиляции

Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора. Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1.

Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений

Основное требованиеБесшумностьМин. потери напораМагистральные каналыГлавные каналыОтветвленияПритокВытяжкаПритокВытяжкаЖилые помещения35433Гостиницы57.56.565Учреждения686.565Рестораны79776Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

15020025030035040045050025021024527530023026530033035024528532535538040026030534537041044045027532036540043546549050029034038042545549052054555030035040044047551554557560031036541546049553556560065032038043047551555559062570039044549053557561064575040045550555059063066580041547052056561065068585048053558062567071090049555060064568572595050556061566070574510005205756256757207601200620680730780830140072578083588016008308859401800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Читайте также:  Коды ошибок кондиционера Gree: как расшифровать обозначение неисправности и починить агрегат

Полное, статическое и динамическое давление. Измерение давления в воздуховодах систем вентиляции

Полное, статическое и динамическое давление

При движении воздуха по ВВ в любом поперечном сечении различают 3 вида давления:

Статическое давление определяет потенциальную энергию 1 м 3 воздуха в рассматриваемом сечении. Оно равно давлению на стенки воздуховода. .

Динамическое давление – кинетическаяя энергия потока, отнесенная к 1 м 3 воздуха.

– плотность воздуха,

– скорость воздуха, м/с.

Полное давление равно сумме статического и динамического давления.

Принято пользоваться значением избыточного давления, принимая за условный ноль атмосферное давление на уровне системы. В нагнетательных воздуховодах полное и статическое избыточное давление всегда «+», т.е. давление > . Во всасывающих воздуховодах полное и статическое избыточное давление «-».

Измерение давления в воздуховодах систем вентиляции

Давление в ВВ измеряется при помощи пневмометрической трубки и какого-либо измерительного прибора: микроманометра либо др.прибора.

Для нагнетательного воздуховода:

статическое давление – трубку статического давления к бачку микроманометра;

полное давление – трубку полного давления к бачку микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Для всасывающего воздуховода:

статическое давление – трубку статического давления к капилляру манометра;

полное давление – трубку полного давления к капилляру микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Схемы измерения давления в воздуховодах.

Билет №10

Потери давления в системах вентиляции

При движении по ВВ воздух теряет свою энергию на преодоление различных сопротивлений, т.е. происходят потери давления.

Потери давления на трение

– коэффициент сопротивления трения. Зависит от режима движения жидкости по воздуховоду.

– кинематическая вязкость, зависит от температуры.

При ламинарном режиме:

при турбулентном движении зависит от шероховатости поверхности трубы. Применяются различные формулы и широко известна формула Альтшуля:

– абсолютная эквивалентная шероховатость материала внутренней поверхности воздуховода, мм.

Для листовой стали 0,1мм; силикатобетонные плиты 1,5 мм; кирпич 4 мм, штукатурка по сетке 10 мм

Удельные потери давления

В инженерных расчетах пользуются специальными таблицами, в которых приводят значения для круглого воздуховода. Для воздуховодов из других материалов вводится поправочный коэффициент и равно:

.

Значение поправочного коэффициента приводится к справочнике в зависимости от вида материала и от скорости перемещения воздуха по воздуховоду.

Для прямоугольных воздуховодов за расчетную величину d принимают эквивалентныйdэк, при которой потери давления в круглом воздуховоде при той же скорости будут равны потерям давления в прямоугольном воздуховоде:

– стороны прямоугольного воздуховода.

Следует иметь в виду: расход воздуха прямоугольного и круглого воздуховодов с при равенстве скоростей не совпадает.

Дата добавления: 2018-02-18 ; просмотров: 11688 ; ЗАКАЗАТЬ РАБОТУ

Основы аэродинамического расчета воздуховодов. Подбор вентиляторов

Этап первый

Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.

Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.

Формирование схемы

Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.

Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная

Приточная

Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.

Вытяжная

Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.

Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.

Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:

  • воздуховод единого размера сечения;
  • из одного материала;
  • с постоянным потреблением воздуха.

Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.

Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.

Определение размерных величин сечений воздуховодов

Производится исходя из таких показателей, как:

  • потребление воздуха на отрезке;
  • нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.

Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.
Читайте также:  Вентиляция септика в частном доме: нужна ли она + советы по обустройству

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

2. Вычисление потерь на трение

Потери
энергии потока вычисляются пропорционально
так называемому
«динамическому» напору, величине
pW2/2,
где р -плотность
воздуха при температуре потока
(определяется по таблице (1)
и (2)), a
W
— скорость в том или ином сечении контура
циркуляции воздуха.

Падение
давления воздуха вследствие действия
трения вычисляют
по формуле Вейсбаха:

=

гдеl
— длина участка контура циркуляции, м,
dэкв-эквивалентный
диаметр поперечного сечения участка,
м,

dэкв=

-коэффициент
сопротивления трения.

Коэффициент
сопротивления
трения определяется режимом течениявоздуха
в рассматриваемом сечении контура
циркуляции, или величиной
критерия Рейнольдса:

Re=dэкв

где
Widэкв
— скорость и эквивалентный диаметр
канала
и
кинематический коэффициент вязкости
воздуха (определяется по таблицам
/1/ и /2/,
м
/с.

для значенийReв
интервале 105
-10
8
(развитое
турбулентное
значение) определяется по формуле
Никурадзе:

=3,2
.
10
-3
0,231
.Re-0,231

Более
подробные сведения по выбору
можно получить из /4/ и /5/ В
/5/
приведена диаграмма для нахождения
значения
,
облегчающая
расчеты.
Вычисленные значения
выражаются в паскалях (Па).

В
таблице 3 сведены значения исходных
данных для каждого канала
скорость,
длина, поперечное сечение,
эквивалентный диаметр,
величина
критерия Рейнольдса, коэффициент
сопротивления,
динамический
напор и величина вычисленных потерь на
трение.

Расчет вытяжной вентиляции все формулы и примеры

Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.

Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.

ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.


В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.


При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.

Расчет вытяжной вентиляции пример

Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

Допустим, в доме живут два человека, тогда:

V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

V = S х Н = 20 х 2,5 = 50 куб.м.

Далее V х 2 (кратность) = 100 кб.м./ч. По другому – 40 кб.м./ч. (средняя активность) х 2 (человека) = 80 куб.м./час. Выбираем большее значение – 100 кб.м./ч.

В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.

Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.

Расчет приточно вытяжной вентиляции

ВОЗДУХОНАГРЕВАТЕЛЬ

В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой ( в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

N /V х 2,98 где 2,98 – константа.

Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

Далее 2000 вт./ 180 кб.м./ч. х 2,98 = 33 град.ц.

Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

При расчёте диаметра каналов эмпирически принимают следующие величины:

  • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
  • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

При этом добиваются скорости потока 2,4 – 4,2 м/сек.

О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000

В этой формуле:

S – количество электроэнергии.

Т1 – максимальная дневная температура.

Т2 – минимальная ночная температура.

L – производительность куб.м./час.

с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

d – цена электроэнергии днём.

n – цена электроэнергии ночью.

N – количество дней в месяце.

Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.

Ссылка на основную публикацию
×
×