Твердотельное реле своими руками: инструкция по сборке и советы по подключению

Как своими руками собрать схему твердотельного реле

Даже начинающий радиолюбитель способен собрать твердотельное реле. Это устройство создано на базе полупроводниковых радиодеталей. Силовые ключи собраны на тиристорах, транзисторах либо симисторах. Для изготовления схемы твердотельного реле своими руками, стоит выяснить принцип работы и особенности подключения устройства. В результате с его помощью можно повысить надежность и безопасность электроцепи.

Преимущества и недостатки

В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.

Однако начать стоит с его описания основных преимуществ:

  • Возможность коммутировать мощные нагрузки.
  • Переключение происходит с высокой скоростью.
  • Качественная гальваническая развязка.
  • Способно выдерживает серьезные перегрузки на коротком временном отрезке.

Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства. Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики. Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Некоторые виды устройств способны работать только в сетях с постоянным током. При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.

Виды устройств

Твердотельные реле можно разделить на несколько групп в соответствии с определенными параметрами. Чаще всего для классификации этих прибор используется категория подключенной нагрузки, а также способ контроля и коммутации напряжения. Таким образом, можно выделить 3 вида реле:

  • Приборы, работающие в цепях постоянного тока.
  • Переключатели для электроцепей переменного тока.
  • Универсальные реле.

К первой группе принадлежат ТТР с показателями коммутируемых напряжений 3−32 В. Они обладают небольшими габаритами, оснащены светодиодной индикацией и могут эффективно работать в температурном диапазоне от -35 до 75 градусов. Представителями второй категории являются переключатели, предназначенные для работы в электроцепях переменного тока при напряжении 24−220 В. Универсальные устройства имеют возможность ручной регулировки для использования в конкретных условиях.

Если классифицировать приборы по характеру подсоединенной нагрузки, то можно выделить 2 типа приборов, работающих в сетях переменного тока, — одно- и трехфазные. С их помощью можно управлять довольно высокой нагрузкой при силе тока 10−75 А. также стоит обратить внимание на пиковые показатели электротока, которые способны достигать 500 А.

Твердотельные переключатели можно применять в различных типах цепей, например, емкостных либо резистивных. Их конструкция позволяет избавиться от шума во время работы, а также добиться плавного управления приводами, например, электромоторами или лампами. ТТР отличаются высокой надежностью, но во многом срок службы приборов зависит от производителя.

Рекомендации по изготовлению

В соответствии с особенностями конструкции, схему прибора стоит собирать не на текстолите, а с помощью навесного монтажа. Существует довольно много схемотехнических решений, а выбирать нужный следует в зависимости от различных параметров, например, коммутируемой мощности.

Электронные элементы и проверка работоспособности

В качестве примера можно рассмотреть простую схему.

Применение оптической пары МОС3083 позволяет формировать управляющий сигнал, входное напряжение которого находится в диапазоне 5−24 В. Чтобы продлить срок работы светодиода АЛ307А, в схему введена цепочка, состоящая из сопротивления и стабилитрона. Найти все электронные элементы будет несложно. Собранная схема в обязательном порядке проверяется на работоспособность.

Для этого можно не подключать к цепи напряжение 220 В, а ограничиться параллельным подсоединением тестера к линии управления симистора. На измерительном приборе предварительно следует выбрать режим «мОм» и подать питание в 5−24 В на участок генерации управляющего напряжения. Если схема была собрана правильно, то тестер покажет разницу сопротивлений в диапазоне мОм-кОм.

Конструкция корпуса

Основанием самодельного твердотельного реле будет пластина из алюминия толщиной от 3 до 5 мм. Размеры пластины принципиального значения не имеют и при выборе материала необходимо учитывать только условия качественного отвода тепла от симистора. Также следует помнить, что поверхность основания должна быть ровной и его необходимо предварительно зачистить с помощью мелкой наждачной бумаги с двух сторон.

Следующим шагом станет установка по периметру пластины бордюра из пластика либо плотного картона. В результате должен получиться короб, который затем заливается эпоксидной смолой. Внутрь корпуса устанавливается собранная с помощью навесного монтажа схема реле. При этом на пластине из алюминия должен располагаться только симистор.

Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Также следует помнить, что у некоторых симисторов анод не изолирован, и они устанавливаются только через слюдяную подложку.

Заливка компаундом

Для изготовления смеси потребуется алебастр и эпоксидная смола без отвердителя. Использование алебастра позволяет решить сразу две задачи — создается смесь идеальной консистенции и получается достаточное количество раствора при минимальном расходе эпоксидной смолы. Во время приготовления компаунд тщательно перемешивается, после чего можно добавить отвердитель и снова перемешать.

После этого созданная схема аккуратно заливается компаундом до верхнего уровня, оставляя на поверхности только часть головки контрольного светодиода. При изготовлении корпуса твердотельного переключателя можно использовать любые растворы, подходящие для литья. Единственным критерием при выборе ингредиентов является отсутствие способности проводить электроток.

Самодельное ТТР станет хорошим выбором для подключения к низковольтной цепи с малой мощностью. Собирать более мощные приборы, рассчитанные на высокие напряжения нецелесообразно. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор.

Твердотельное реле своими руками

Для многих схем силовой электроники твердотельное реле стало не просто желательно но и необходимо. Их преимущество – в количестве срабатываний несоизмеримо больших, по сравнению с электромеханическими, на порядок (а на практике и того больше).

До изготовления твердотельного реле я обычно изготавливал цепочки из симистора и схемы управления с гальванической развязкой типа симистороной оптопары MOC30***. Для примера будем использовать следующие (базовые) компоненты:

  1. Симисторная оптопара MOC3083 (VD1)
  2. Симистор с изолированным анодом марки BT139-800 16A (V1 от Philips)
  3. Сопротивление для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт)
  4. Светодиод индикации АЛ307А (LD1)
  5. Резистор на управляющий электрод симистора 160 Ом (R2 , 0.125Вт)


Рис 1

Твердотельное реле – эта как бы инкапсуляция такой цепочки. Для изготовления твердотельного реле воспользуемся рекомендациями предложенными в сборнике [1 ] . В ней автор рекомендует для повышения надежности электронных устройств (и самодельных в том числе) заключать их в эпоксидный брикет, приводя подробное описание данной технологии. Посмотрим, что нам понадобиться для изготовления твердотельного реле по этой методике. (см. фото 1). Отметим попутно, что во время написания статьи [ 1 ] клеевые пистолеты ещё не были столь распространены как сейчас.

Итак, выбираем подложку из металла, который быстро проводит тепло, например алюминий. Размер и толщина подложки выбираются исходя из количества тепла, которое потребуется отвести от симистора с учетом того , что сама подложка для этой цели, может быть установлена на металлической поверхности. Далее выбираем опалубку для заливки, с таким расчетом, чтобы внутри нее разместить все элементы указанной цепочки. В качестве опалубки используем любые удобные элементы из пластика напр. цилиндр от пластиковой трубы, часть пластикового короба от кабельного лотка, в моем случае опалубка изготовлена из части пенала для принтерных расходников. Далее приклеиваем пистолетом опалубку к подложке, и заклеиваем отверстия и щели, если они есть. Помещаем схему, спаенную и проверенную. Здесь необходимо отметить, что выводы у симистора определяются не всегда однозначно. Чтобы проверить открывается ли симистор от протекания тока через светодиод оптопары MOC3083, в большинстве случаев, можно узнать (без подключения напряжения 220В), подцепившись тестером на мегаомах к выходным концам симистора схемы. При открывании симистора сопротивление будет падать от десятком мегаом до единиц килом (по тестеру).

Для симистора, в обязательном порядке, делаем промежуточный слой между спинкой корпуса и подложкой из теплопроводной пасты марки КПТ-8. Если у симистора анод не является изолированным, необходима также изоляционная прокладка, например из пластинки слюды, вырезанной по размеру корпуса и обработанной пастой КПТ с обеих сторон (все элементы схемы не должны иметь электрического контакта с подложкой!). Далее, прижав корпус симистора, фиксируем его на подложке с помощью клеевого пистолета (рис 2).

Укладываем остальные части схемы, обращая внимание, чтобы они не касались металлической подложки, а находились как бы «на весу». Готовим компаунд для заливки формы в отдельной емкости. Для этого основной компонент эпоксидки смешиваем с порошком алебастра, не добавляя пока отвердитель. Следует отметить, что алебастр добавляем не только для увеличения объема компаунда, но и для снижения текучести эпоксидки. В противном случае раствор ЭДП будет вытекать через мельчайшие отверстия в форме. Добавляем отвердитель к полученной массе компаунда и вновь перемешиваем. Масса должна сохранять текучесть. Заполнив форму не следует беспокоиться об образовавшихся неровностях на поверхности брикета. (рис 3).

Если расположить его на горизонтальной поверхности, то силы гравитации сделают поверхность достаточно гладкой в течении получаса (рис 4) и имеющую цвет светлого кофе. Автор далек от мысли, чтобы настаивать на указанных материалах и технологии, как единственно возможной. Наверняка, например, подойдет использование клея типа «жидкие гвозди» или полиуретановая пена в качестве компаунда, лишь бы материал обладал низкой электропроводностью и достаточной электрической прочностью.

Теперь внимательно посмотрим на исходную схему. Если подключать новоиспеченное реле к Arduino и т.п. устройствам на микроконтроллерах с питанием не более 5В, этой схемы будет достаточно. Что же делать , если необходимо расширить диапазон управляющих напряжений, скажем, от 5 до 24 В? Схемотехника MOC30** позволяет нам это сделать без дополнительных ухищрений, поскольку диапазон тока через светодиод оптопары простирается там до 50 мА. Сложнее обстоит дело с индикаторным светодиодом, таким, например, как АЛ307А . Согласно рекомендациям производителей: не следует устанавливать постоянный прямой ток /ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА. Т.Е. нужно каким-то образом организовать схему так, чтобы ток, протекающий по цепи АЛ307 – 1,2 MOC3083 мало зависел бы от прилагаемого напряжения. Кажется , что наиболее просто этого добиться подключив стабилитрон D после балластного сопротивления R1, учитывая тот факт, что напряжение на светодиоде, как правило линейно зависит от протекаемого тока, начиная от некоторого уровня (напр. 1,6 В) . В этом случае стабилитрон с опорным напряжением 3,3В откроется при достижения опорного, и будет «стравливать» избыточный ток через себя.

Читайте также:  Степень защиты IP: расшифровка обозначения стандартов

Но более эффективны в этом случае схемы с питанием данной цепи источником тока [ 2, 3 ].

Следуя рекомендациям указанных источников, построим схему с питанием стабильным током в диапазоне 7—14 мА и в диапазоне питающих напряжений 4—24В.


Рис 2

Освоив данную технологию и «набив руку», без сомнения, можно изготавливать твердотельные реле в больших количествах словно «горячие пирожки».

Литература:

  1. Бирюков С.А.Устройства на микросхемах: цифровые измерительные устройства, источники питания, любительские конструкции, Москва «Солон-Р», 2000, стр. 188
  2. П. Хоровиц, У Хилл Искусство схемотехники, Москва, «Мир» ред. М.В. Гальперина 1986 Том 1. Стр.103
  3. Горошков Б.И. Радиоэлектронные устройства (Справочник) М. «Радио и связь» 1984г

Инструменты

Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее.

Оглавление:

Твердотельное реле – принцип работы

Твердотельное реле – это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током – транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Преимущества и сфера использования твердотельного реле

Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле:

1. Небольшое потребление энергии – из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%.

2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать.

3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска.

4. Низкая шумопроизводительность – еще одно преимущество твердотельного реле перед контактерами.

5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания.

6. Имеют большую сферу использования и подходят для разных приборов.

7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера.

8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

9. Твердотельное реле позволяет осуществить более миллиарда срабатываний.

10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора.

11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами.

Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства:

  • система, в которой производится регулировка температуры при помощи тэна;
  • чтобы поддержать постоянную температуру в технологическом процессе;
  • для коммутирования цепи управления;
  • при выполнении замены пускателей бесконтактного реверсного типа;
  • управление электрическими двигателями;
  • контроль нагрева, трансформаторов и других технических приборов;
  • регулирование уровня освещения.

Разновидности твердотельных реле

Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения:

1. Твердотельные реле постоянного тока – используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов.

2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт.

3. Твердотельные реле с ручным управление, позволяют настраивать тип работы.

В соотношении с типом нагрузки выделяют:

  • однофазное твердотельное реле,
  • трехфазное твердотельное реле.

Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений.

Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство.

Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия.

Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию.

В соотношении с методом коммукации выделяют:

  • устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции;
  • реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание;
  • реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

В соотношении с конструкцией твердотельные реле бывают:

  • монтируемые на Д И Н рейки,
  • универсальные, устанавливаемые на планки переходного типа.

Выбор и покупка твердотельного реле

Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Твердотельное реле цена определяется такими характеристиками:

  • тип устройства,
  • наличие крепежных элементов,
  • материал, из которого изготовлен корпус,
  • мгновенное или постепенное включение,
  • наличие дополнительных функций,
  • производитель,
  • мощность,
  • потребление электроэнергии,
  • габариты прибора.

Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя.

Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле.

Есть несколько разновидностей предохранителей:

  • g R – используются во широком диапазоне мощностей, отличаются быстрым действием;
  • g S – используются во всем диапазоне тока, защищаю элементы полупроводников от повышенных нагрузок электросети;
  • a R – защищают элементы полупроводникового типа от возникновения коротких замыканий.

Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки.

Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью.

Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит.

Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз.

Особенности подключения твердотельного реле

Рекомендации по самостоятельному подключению твердотельного реле:

1. Соединения не требуют использования пайки, а осуществляются винтовым способом.

2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения.

3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства.

4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов.

5. Перед включением реле следует убедиться в правильной коммутации соединений.

6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения.

7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе.

Твердотельное реле своими руками

Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

Читайте также:  Как установить розетку в гипсокартоне: правила монтажа и советы по установке подрозетника

В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить.
Еще одна статья – «Транзисторный ключ с оптической развязкой»

В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.

Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

TLP590B Datasheet Pdf

Такие преобразователи на выходе обеспечивают напряжение порядка 9 вольт, что вполне достаточно для управления моп-транзисторами. Из документации на эти преобразователи видно, что они очень маломощные и способные отдать на выходе ток всего лишь порядка 12мкА. У моп-транзисторов есть такой параметр – Заряд затвора – Qg. Пока затвор данного транзистора не получит необходимый заряд – транзистор не начнет открываться. Скорость заряда зависит от тока, который может обеспечить цепь управления, чем больше ток управления, тем быстрее затвор получает необходимый заряд, тем быстрее открывается транзистор. Тем меньше будет время, когда коммутирующий транзистор будет находиться в активной зоне выходной характеристики – тем меньше на нем будет выделяться тепла. Но в нашем случае, когда транзистор работает не в преобразователе, на относительно высоких частотах, а в качестве реле, вкл – выкл, ток в 12 мкА будет достаточен. Правда лучше конечно выбирать ключевые транзисторы с малым зарядом затвора. Например.

AOT7S60 Datasheet Pdf

Этот транзистор способен коммутировать напряжение 600В при токе стока 7А. Мощность стока при температуре +25 С — 100Вт. При этом заряд затвора Qg всего 8,2 нанокулона = 8,2nC. Для сравнения популярный транзистор IRF840 имеет Qg = 63nC.

IRF840 Datasheet Pdf

Для управления низковольтными нагрузками можно применить транзистор irlr024zpbf. При данных режимах измерения ток стока – 5А, напряжение сток – исток – 44В, напряжение затвор – исток -5В, имеет типовое значение заряд затвора Qg = 6,6nC.

irlr024zpbf Datasheet Pdf

Но у меня таких транзисторов нет и я для реле использовал транзисторы IRL2505 с каналом типа n. У данного транзистора Qg = 130nC !

IRF2505 Datasheet Pdf

Другой транзистор с каналом типа р — IRF4905, у этого транзистора максимальный Qg = 180nC .

IRF4905 Datasheet Pdf

Схему собрал самую простую, ту что на рисунке 4

В качестве коммутирующего транзистора в этой схеме использован транзистор IRF4905 с каналом – р. Транзистор не был снабжен теплоотводом и в открытом состоянии нагревался до +60˚С при токе 2А. Напряжение 3,3В коммутировал нормально. Теперь, имея в своем распоряжении такой преобразователь, что нам мешает использовать в положительном проводе питания и транзистор с каналом n?

Результат превзошел мои ожидания. Транзистор IRF2505 без радиатора практически не грелся при токе нагрузки 4А. при напряжении на нагрузке 12,6 В В обоих экспериментах ток управления я выставил примерно 10 мА. Максимальный ток светодиода по документам – 50 мА. Больше 10 мА не стоит увеличивать ток – практически ни чего не меняется. Я очень доволен таким реле. Если описать параметры этой релюхи, применительно к электромагнитному реле, то они были бы такими. Напряжение срабатывания – какое хочешь ! Только подбирай R2. Ток срабатывания – 10 мА. Ток и напряжение коммутации – какое хочешь . (В разумных пределах конечно)Только подбирай транзисторы. Не слабо. Хотелось бы проверить данные устройства с коммутацией емкостных и индуктивных нагрузок. Это позже. Пока искал буквы на клавиатуре, пришла еще одна мысль. Если транзистор поставить в диагональ диодного моста, то можно коммутировать переменные напряжения. Таким реле можно коммутировать обмотки трансформаторов. Пока все. Всем удачи. К.В.Ю.

Твердотельное реле – устройство и особенности конструкции

Главная страница » Твердотельное реле – устройство и особенности конструкции

Электромеханическое реле (ЭМР) — недорогой, простой в использовании электронный прибор. Этот вид коммутаторов позволяет переключать цепь нагрузки посредством управления электрическим изолированным входным сигналом. Но электромеханическое реле обладает существенным недостатком – действует на механической основе. Фактор механики ограничивает, к примеру, скорость переключения (время отклика) контактной группы. В этом смысле конструкция твердотельных реле выглядит более привлекательной. К тому же эксплуатационную долговечность твердотельное реле гарантирует более длительным сроком по сравнению с прибором механического действия.

Твердотельное реле: причины появления

Именно с целью преодоления отмеченных недостатков ЭМР, был разработан другой тип устройств коммутации, называемый твердотельным реле (ТТР).

Относительно новый прибор короткого замыкания представляет собой твердотельный бесконтактный, чисто электронный конструкторский вариант.

Существующий ассортимент приборов открывает широкие возможности для решения задач электро-электронного характера. Самые разные модели ТТР предлагает рынок электроники

Полупроводниковое реле, выступая исключительно электронным устройством, логически отрицает наличие движущихся частей в составе конструкции.

Функции механических контактов твердотельного устройства заменены силовыми полупроводниковыми ключами:

Электрическое разделение (развязка) между входным управляющим сигналом и входным напряжением нагрузки осуществляется при помощи высокочувствительной оптопары.

Особенности исполнения электронных коммутаторов

Исполнение твердотельного реле обеспечивает высокую степень надежности, долговечность эксплуатации. Практика применения отмечает существенное снижение электромагнитных помех.

С точки зрения скорости действия – ТТР показывает мгновенное время отклика по сравнению с обычным электромеханическим коммутатором.

Требования по отношению к мощности управления входным сигналом твердотельного реле, как правило, достаточно низки. Поэтому твердотельным приборам присуща обширная совместимость.

Возможная конфигурация приборов: 1, 2, 3, 4 — схема управления ключом; А — транзисторная на постоянный ток нагрузки; В — тиристорный мост под переменный ток; С — последовательное включение тиристоров под переменный ток; Е — симисторная под переменный ток

Электронные коммутаторы совместимы с большим числом компонентов семейства логических интегральных схем. При этом нет необходимости внедрения дополнительных буферов, драйверов, усилителей сигнала.

Однако, будучи полупроводниковым устройством, твердотельные реле часто требуют установки на мощные радиаторы охлаждения для предотвращения перегрева ключевого переключающего полупроводника.

Твердотельное реле: логика действия

Функционально приборами переменного тока предусматривается переключение в состояние «включено» в точке пересечения нуля синусоидальной формой переменного тока.

Так предотвращается момент высоких пусковых токов при переключении индуктивных или емкостных нагрузок.

Фактор переключения: 1 — состояние ключа «включено»; 2 — состояние ключа «отключено»; 3 — актуальная точка включения; 4 — напряжение включения; 5 — актуальная точка отключения; 6 — отпирающее напряжение; 7 — состояние выхода

Обратная функция переключения тиристоров, транзисторов, симисторов в состояние «выключено» обеспечивает улучшенные характеристики с точки зрения возможного образования электрической дуги, чем традиционно «болеют» контакты электромеханических реле.

Аналогично конструктивному исполнению электромеханических реле, на выходных клеммах ТТР также требуется наличие цепи демпферов из серии резистивно-конденсаторной группы.

Таким способом осуществляется защита выходных полупроводников коммутационных устройств от импульсных помех и напряжений.

Как правило, этот вид помехи образуется при переключении высоко-индуктивных или ёмкостных нагрузок. Конструктивное исполнение большинства современных ТТР предусматривает внедрение защитных RC-шлюзовых цепей непосредственно в тело приборов. Этот момент исключает необходимость дополнять схему внешними электронными компонентами.

Ненулевые переключатели-детекторы перекрестных помех (мгновенное включение), типичные ТТР, используются в конструкциях с фазовым управлением.

Варианты управления ТТР: А — прямое переключение управления; В — транзисторное переключение; С — управление логическим элементом: Е — управление микроконтроллером

Простой пример: управление освещением на концертах, шоу, дискотеках и т. п. Также часто устройства используются для управления скоростью вращения вала электродвигателей.

Поскольку выходным коммутационным устройством твердотельного реле является полупроводниковое устройство (транзистор для цепей коммутации постоянного тока или комбинация симистор-транзистор для переключения переменного тока), падение напряжения на выходных клеммах ТТР обычно достигает 1,5-2,0 вольт.

При многократном переключении больших токов потребуется дополнительный тепловой отвод с помощью металлических радиаторов.

Системы ввода-вывода модульного типа

Модульный интерфейс ввода-вывода также следует рассматривать типичным твердотельным реле, специально предназначенным под интерфейсы компьютеров, микроконтроллеров, для «реальных» нагрузок и переключателей.

8-канальный модуль твердотельного реле (переменного тока), оснащённый интерфейсом USB. Подобные решения находят частое применение в составе компьютерной техники

Доступны четыре основных типа модулей ввода-вывода:

  1. Входное напряжение переменного тока с выходом логического уровня TTL или CMOS.
  2. Входное напряжение постоянного тока с выходом логического уровня TTL или CMOS.
  3. Выходной сигнал TTL или CMOS для переменного выходного напряжения.
  4. Выходной сигнал TTL или CMOS для постоянного выходного напряжения.

Каждый из модулей содержит в одном маленьком устройстве все необходимые схемы для обеспечения полного интерфейса и обеспечения изоляции.

Устройства доступны в виде отдельных твердотельных модулей или интегрированы в составе 4, 8 или 16-канальных систем.

Недостатки твердотельных реле

Основными недостатками твердотельных реле (ТТР), по сравнению с электромеханическим реле одинаковой мощности, являются более высокие затраты на изготовление этого вида электронных приборов.

В состоянии «выключено» отмечаются утечки тока через коммутационное устройство. Кроме того, в состоянии «включено» отмечается фазное падение напряжения и рассеивание мощности, что требует применения дополнительных отводящих тепло приспособлений.

Твердотельные реле не в состоянии обеспечить переключение при малых токах нагрузки, а также прохождение высокочастотных сигналов, подобных аудио или видео.

Правда, для этого варианта коммутации существуют и доступны специальные полупроводниковые переключатели.

Изготовление твердотельного реле своими руками

Непосредственно своими руками, каждому электронщику среднего уровня под силу собрать простое твердотельное реле. Прибор, сделанный своими руками, может использоваться для управления нагрузкой, питаемой от бытовой сети переменного тока.

К примеру, можно сделать более эффективным управление лампами освещения или электродвигателями, если собрать электронный регулируемый коммутатор по следующей схеме.

Читайте также:  Как подключить интернет розетку: пошаговое руководство по установке

Схема для сборки своими руками под нагрузку 300-600 Вт при напряжении 120 — 220В: 1 — оптопара МОС 320, МОС 341; 2 — симистор BTA06-600B; 3 — управляющий сигнал от микроконтроллера

Схема основана на электронном устройстве развязки — оптопаре MOC 3020. Между тем опто-симисторный регулятор MOC 3041 имеет те же характеристики, но дополнительно наделён встроенной системой детектирования пересечения точки нуля.

Этот вариант позволяет получить полную мощность без тяжелых пусковых токов при переключении индуктивных нагрузок. Благодаря диоду D1 предотвращается повреждение схемы по причине обратного подключения входного напряжения.

Резистор R3, номиналом 56 Ом, шунтирует прохождение токов, когда симистор находится в состоянии закрытого перехода, исключая ложное срабатывание.

Этим же резистором организуется связь терминала затвора с нижним по схеме электродом, чем обеспечивается полное закрытие перехода симистора.

Если используется входной сигнал широтно-импульсной модуляции, частота переключения режимов «включено-отключено» должна быть установлена максимум на 10 Гц не более для нагрузки переменного тока. В противном случае, переключение состояния выходной цепи реле может быть нарушено.

Подробный видео-рассказ о принципах работы ТТР

Сообщества › Электронные Поделки › Блог › помогите отремонтировать твердотельное реле

Всем привет. Ребята подскажите, приобрел у братьев наших низкорослых твердотельное реле 40А для запуска 3х 2квт тенов в 220в, запустил и минут через 5 выбило автомат…

снял реле, смотрю на клемах почернение. Разобрал его, выпаял симистор, а он пробитый.

Так вот вопрос, симистор стоит BTA16 600b, т.е мах 16А 600В как он может выдержать 40А да еще на таких тонких ножках, если у меня на тэны идет провод 5 квадратов, или он при 220v держит эти 40А? На что более мощное его можно заменить?

Смотрите также

Комментарии 71

и глянь видосы как чел заводит спор с нечестным продованом по лед лампам он вернул пол стоимости за рабочие все лампы просто леды были нетой марки и размер и по мощьности . а утебя схорело изза нечесного описания продовца и его надо тыркать носом чтоб стал честным или другие глянут фоты твои в отрицательных отзывах и все увидят . дерзай думаю всю сумму вернешь или новый тебе пришлет

некогда непоздно написать гневный отзыв на продовца то он так и будет обманывать всех . все ему напиши как есть и пусть он исправит что честно стоит на плате что по 12-20апер симистор там и выложи фотки в отзывы если он тебе неоплатит теристор 40-600 который ты купил и ремонт тоесть 100-150ре пусть вернет поверь он согласиться если он еще продает . или пусть пришлет еще один такойже . в личном сообщении напиши что откроешь спор. этоже реальный обман .

а почему вы спор не открыли китайцу и засняли бы все что несоответствует 40 амперам и пообещали бы ему отзыв голимый написать глядишь деньги бы вернул вам на карту . пусть знает что честным быть лучше ми дешевле там гарантия врое год -надо всегда уточнять и при покупке писать сразу ему если чегото будет нето снаружи и в нутри то спор и отзывы сразу ему предупредить его узкоглазую наглюгу . если симистор мощьный поставили то и резистор наверняка надо немного уменьшить или у вас одинаковый ток уэ у этих тиругиных. ясам удивился какие кит аесы нечсные врут особенно в описании и фоты делают сладкие и большые а сама вещь может быть мизерная где нечего не увидишь на дисплее . глянул на яндексе фотки и у многих обман даже за 700ре дс дс реле на 120апер а там пт в то220 -маленький на 60ампер и зачем нужнав сичичная коробочка с 5 деталями за 700ре .

Я это реле 1.5 года назад покупал, только недаво запустил печь с этим реле и оно сгорело, поздно уже писать!

Решил снова вернуться к этой теме и подобрал симистор. Поставил BTA41-800 и вуаля! Все работает отлично. Коммутирует нагреватель мощностью 4кВт. Работает пока третий день, нареканий нет. Кстати, решил во всех своих экземплярах заменить этот симистор и каково было мое удивление, когда разобрав второй я там обнаружил BTA12! Мудаки китайцы.

Я тоже поменял на BTA41 600B, отлично тянет 28А 6000Вт, на всякий случай еще поставил на радиатор кулер с компа, не так сильно греется

Аналогично установил радиатор с процессора и вентилятор. Токи недетские- необходимо обезопаситься))

Поставь обычный контактор на 40А и не изобретай колесо. Собраные на коленке реле подобного типа надо маркировать с добавкой минус 1 нолик.

А в чем преимущество перед магнитным пускателем?
Кроме того, что реле значительно тише)

Только в этом. У меня печь с терморегулятором, с ума сойду сколько оно будет щелкать, да и думаю что в таком режиме быстро подгорят контакты!

нужно 3 штуки было
перегрузил его, 37А для реле с пиковым 40А многовато.

Как это 6000вт/220в=27А, откуда 37А, уже впаял BTA41 600B нормально цикл отработало!

Опечатался да 27А

Только в этом. У меня печь с терморегулятором, с ума сойду сколько оно будет щелкать, да и думаю что в таком режиме быстро подгорят контакты!

у меня электрокотел ЭОС и я поставил контактор, собери в щитке и ничего не будет слышно.

Поправьте может я не правильно понимаю. Если посчитать мощность этой рыле то получается (600*15) 9кв. Если разделить 9кв на 40 (9000/400) то получаем 225в. Т.е при 225 вольтах рыле выдержит 40А.

Нет. Напряжение не при чем)

Потому что у полупроводников напряжение и ток живут отдельно друг от друга. Например, если для полевого транзистора IRHMS67264SCS указано 250В и 45А, то это предельные значения — постоянный ток более 45А нельзя гнать через него.

вот тут не верно
напряжение и ток образую мощность которую сможет переварить транзюк, и про постоянный ток он боюсь и 10А не выдержит, вся фишка в том что он работает в импульсном режиме, за счет этого переваривает такую мощность.

Посмотри даташит на этот транзистор — 45А постоянный ток, имплульсный 180А. Сопротивление канала около 40мОм. При токе 45А на нем выделится около 80Вт, корпус же его (TO254AC) рассеивает до 200Вт.

Я про китайский девайс, там обычно 16 амперки стоят в импульсном тянут до 40

Только на импульс идёт ограничение по длительности и частоте повторения. А заявленные 16А постоянного тока он должен выдержать с соответствующим охлаждением.

Поправьте может я не правильно понимаю. Если посчитать мощность этой рыле то получается (600*15) 9кв. Если разделить 9кв на 40 (9000/400) то получаем 225в. Т.е при 225 вольтах рыле выдержит 40А.

Правильно говорит. Если максимум 16А это может быть 24В и 16А или 380в и 16А. Если Ток будет 20А и 12В то уже проблемы. Видимо китайцы обманули как часто это бывает. Или обманули их кустарным производством.

Хорошо что не купил, лучше самому собрать. Там MOC3021 по типовой схеме и BTA41-600B

Китайцы хитрят, указывают импульсный ток. Причём, с условиями им одним известными.

Как уже писали тут…поставить туда оптрончик другой и симистор помощнее…блин, если б я помнил номиналы подсказал бы…просто в термостатах лично менял такие реле на спарку: оптрон+симистор

Столкнулся с той же ситуацией. Пробовал ставить симисторы на 40А или на 45, уже точно не помню. Так вот схема включения не смогла им управлять. При малой нагрузке работал хорошо, а при подключении ТЭНов не включал вовсе. Решил пока ограничиться 16 амперами, а в будущем собрать внутри этих корпусов подобную схему, но на более мощных компонентах (заменив не только симистор, но и оптосимистор или как там его еще называют).

если есть кетайские Ватты, почему бы не быть кетайским Амперам?
автор: почему бы не собрать требуемое из необходимых компонентов: симистор по вкусу + zero-cross оптрон? И уж точно такое будет понадёжнее безродного кетая.

Это не китайские амперы, это не указанное время нагрузки.
Пиковая на 0.0000000001с может быть и 1000А.

На заводе стоит твердотелка кипприбор, несколько лет тянет три тэна, не помню какой мощности, покупали за 1500, надежные, рекомендую)

я диспут открывал и возвращал деньги в полную стоимость из-за таких вот 16 амперных симисторов))) для не большой нагрузки самое оно их использовать

такую нагрузку лучше равномерно на 3 фазы, а коммутировать этим www.ebay.com/itm/DC-AC-Th…cdba12:g:UggAAOSwLF1YALRD

К сожалению у меня нет 3х фаз

тык и надо было покупать 220, китай все правильно указал, даже с запасом, 3 фазы на 220 и будет 13 ампер…у вас даже с запасом, считать надо правильно…по кетайскЭ

только как можно подключить 380в на однофазное реле? по любому, если я буду подключать одну фазу, то между фазой и нулем будет 220В. Для 380 есть свои 3х фазные реле!

вот так и можно, три штуки, по одной на фазу… как предохранитель, тоже ведь пишется 60 ампер, но вы же его ставите на один провод

ну написано же 380 вольт, вот и он и выдерживает 40 ампер, а при 220 она увеличивается, тоесть тут дело в мышлении китайском, как вам обьяснить то…тоесть у них только 40 ампер и они их вычисли при 380 , плюс еще кратковременно, час или еще чего, а вы увеличили нагрузку сделав 220, вот и ток поднялся

Коммутация мощной нагрузки не так проста, недавно попалась статья на гике, я думаю это оптимальное решение.
geektimes.ru/company/unwds/blog/271090/

очень хорошо работает подобный принцип. но не самая простая реализация.
в начале века по этому принципу свет в цеху включали (пол сотни ДРЛок на линию не самая хорошая нагрузка)

Коммутация мощной нагрузки не так проста, недавно попалась статья на гике, я думаю это оптимальное решение.
geektimes.ru/company/unwds/blog/271090/

Похожая штука была в советских светофорах.

чтобы продлить срок службы ламп ?

Дума что реле еще. Потому что мигание сделоно тиристором, а не релюшкой

Похожая штука была в советских светофорах.

В паралель нельзя поставить 3-4 таких реле?

Ссылка на основную публикацию
×
×