ЭПРА для светильника: устройство, назначение и схемы электронного балласта для люминесцентных ламп

Как работает ЛЛ с электронным балластом

Из-за массы недостатков электромагнитного балласта создали новый, более долговечный и технологичный ЭПРА. Это единый электронный блок питания. Сейчас он самый распространенный, так как лишен недостатков, имеющихся в ЭмПРА. К тому же он работает без стартеров.

Для примера, возьмем схему любого электронного балласта.

Схема электронного балласта для люминесцентных ламп

Входящее напряжение выпрямляется, как обычно, диодами VD4-VD7. Затем идет фильтрующий конденсатор С1. Его емкость зависит от мощности лампы. Обычно руководствуются расчетом: 1 мкФ на 1 Вт мощности потребителя.

Далее заряжается конденсатор С4 и пробивается динистор CD1. Образующийся импульс напряжения задействует транзистор Т2, после чего в работу подключается полумостовой автогенератор из трансформатора TR1 и транзисторов Т1 и Т2.

Электроды лампы начинают разогреваться. К этому добавляется колебательный контур, входящий в электрический резонанс перед разрядкой из дросселя L1, генератора и конденсаторов С2 и С3. Его частота составляет около 50 кГц. Как только конденсатор С3 заряжается до напряжения запуска, интенсивно нагреваются катоды, и происходит плавное зажигание ЛЛ. Дроссель сразу же ограничивает ток, а частота генератора падает. Колебательный контур выходит из резонанса, и устанавливается номинальное рабочее напряжение.

Плюсы электронных балластов:

  • малый вес и небольшие габариты за счет высокой частоты;
  • высокая светоотдача благодаря повышенному КПД;
  • нет миганий у ЛЛ;
  • защита лампы от перепадов напряжения;
  • отсутствие шума при работе;
  • долговечность благодаря оптимизации режима запуска и работы;
  • есть возможность установить моментальный пуск или с задержкой.

Минус электронных балластов – только лишь высокая стоимость.

Обратите внимание! Электронный дешевый балласт для люминесцентных ламп работает, как и ЭмПРА: лампа дневного света зажигается от большого напряжения, а горение поддерживается малым.


При подаче питания исправный балласт зажжет лампочку.

Как устроены и работают ЭПРА для люминесцентных ламп

Люминесцентные лампы не могут работать напрямую от сети 220В. Для их розжига нужно создать импульс высокого напряжения, а перед этим прогреть их спирали. Для этого используют пускорегулирующие аппараты. Они бывают двух типов – электромагнитные и электронные. В этой статье мы рассмотрим ЭПРА для люминесцентных ламп, что кто такое и как они работают.

Из чего состоит люминесцентная лампа и для чего нужен балласт?

Люминесцентная лампа этот газоразрядный источник света. Он состоит из колбы трубчатой формы наполненной парами ртути. По краям колбы расположены спирали. Соответственно на каждом краю колбы расположена пара контактов – это выводы спирали.

Работа такой лампы основана на люминесценции газов при протекании через него электрического тока. Но ток просто так между двумя металлическими спиралями (электродами) просто так не потечет. Для этого должен произойти разряд между ними, такой разряд называется тлеющим. Для этого спирали сначала разогревают, пропуская через них ток, а после этого между ними подают импульс высокого напряжения, 600 и более вольт. Разогретые спирали начинают эмитировать электроны и под действием высокого напряжения образуется разряд.

Если не вдаваться в подробности – то описание процесса достаточно для постановки задачи для источника питания таких ламп, он должен:

1. Разогреть спирали;

2. Сформировать зажигающий импульс;

3. Поддерживать напряжение и ток на достаточном уровне для работы лампы.

Интересно: Компактные люминесцентные лампы, которые чаще называют “энергосберегающими”, имеют аналогичную структуру и требования для их работы. Единственное отличие состоит в том, что их габариты значительно уменьшены благодаря особой форме, по сути это такая же трубчатая колба, на форма не линейная, а закрученная в спиралевидную.

Устройство для питания люминесцентных ламп называется пускорегулирующим аппаратом (сокращенно ПРА), а в народе просто – балластом.

Различают два вида балласта:

1. Электромагнитный (ЭмПРА) – состоит из дросселя и стартера. Его преимущества – простота, а недостатков масса: низкий КПД, пульсации светового потока, помехи в электросети при его работе, низкий коэффициент мощности, гудение, стробоскопический эффект. Ниже вы видите его схему и внешний вид.

2. Электронные (ЭПРА) – современный источник питания для люминесцентных ламп, он представляет собой плату, на которой расположен высокочастотный преобразователь. Лишен всех перечисленных выше недостатков, благодаря чему лампы выдают больший световой поток и срок службы.

Схема ЭПРА

Типовой электронный балласт состоит из таких узлов:

2. Высокочастотный генератор выполненный на ШИМ-контроллере (в дорогих моделях) или на авто генераторный схеме с полумостовым (чаще всего) преобразователем.

3. Пусковой пороговый элемент (обычно динистор DB3 с пороговым напряжением 30В).

4. Разжигающей силовой LC-цепи.

Типовая схема изображена ниже, рассмотрим каждый из её узлов:

Переменное напряжение поступает на диодный мост, где выпрямляется и сглаживается фильтрующим конденсатором. В нормальном случае до моста устанавливают предохранитель и фильтр электромагнитных помех. Но в большинстве китайских ЭПРА нет фильтров, а ёмкость сглаживающего конденсатора ниже необходимой, от чего бывают проблемы с поджигом и работой светильника.

Совет: если вы ремонтируете ЭПРА, то прочтите статью «Как проверить диодный мост» на нашем сайте.

После этого напряжение поступает на автогенератор. Из названия понятно, что автогенератор – это схема, которая самостоятельно генерирует колебания. В этом случае она выполнена на одном или двух транзисторах, в зависимости от мощности. Транзисторы подключены к трансформатору с тремя обмотками. Обычно используются транзисторы типа MJE 13003 или MJE 13001 и подобные, в зависимости от мощности лампы.

Хоть и этот элемент называется трансформатором, но выглядит он не привычно – это ферритовое кольцо, на котором намотано три обмотки, по несколько витков каждая. Две из них управляющие, в каждой по два витка, а одна – рабочая с 9 витками. Управляющие обмотки создают импульсы включения и выключения транзисторов, соединены одним из концов с их базами.

Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

При протекании тока в одной из обмоток в двух других наводится ЭДС соответствующей полярности, которое и приводит к переключениям транзисторов. Автогенератор настроен на частоту выше звукового диапазона, то есть выше 20 кГц. Именно этот элемент является преобразователем постоянного тока в ток переменой частоты.

Для запуска генератора установлен динистор, он включает схему после того как напряжение на нем достигнет определённого значения. Обычно устанавливают динистор DB3, который открывается в диапазоне напряжений около 30В. Время, через которое он откроется, задается RC-цепью.

Более продвинутые варианты ЭПРА, строятся не на автогенераторной схеме, а на базе ШИМ-контроллеров. Они имеют более устойчивые характеристики. Однако, за более чем пять лет занятий электроникой мне не разу не попался такой ЭПРА, все с которыми работал, были автогенераторными.

Выше неоднократно упоминалось об LC цепи. Это дроссель, установленный последовательно со спиралью, и конденсатор, установленный параллельно лампе. По этой цепи сначала протекает ток, прогревающий спирали, а затем образуется импульс высокого напряжения на конденсаторе её зажигающий. Дроссель выполняется на Ш-образном ферритовом сердечнике.

Эти элементы подбираются так, чтобы при рабочей частоте они входили в резонанс. Так как дроссель и конденсатор установлены последовательно на этой частоте наблюдается резонанс напряжений.

При резонансе напряжений на индуктивности и ёмкости начинает сильно расти напряжение в идеализированных теоретических примерах до бесконечно большого значения, при этом ток потребляется крайне малый.

В результате мы имеем подобранные по частотам генератор и резонансный контур. По причине роста напряжения на конденсаторе происходит зажигание лампы.

Ниже изображен другой вариант схемы, как вы можете убедиться – все в принципе аналогично.

Благодаря высокой рабочей частоте удаётся достигнуть малых габаритов трансформатора и дросселя.

Для закрепления пройденной информации рассмотрим реальную плату ЭПРА, на картинке выделены основные узлы описанные выше:

А это плата от энергосберегающей лампы:

Заключение

Электронный балласт значительно улучшает процесс розжига ламп и работает без пульсаций и шума. Его схема не очень сложна и на её базе можно построить маломощный блок питания. Поэтому электронные балласты от сгоревших энергосберегаек – это отличный источник бесплатных радиодеталей.

Люминесцентные лампы с электромагнитным пускорегулирующим аппаратом запрещено использовать в производственных и бытовых помещениях. Дело в том, что у них сильные пульсации, и возможно появление стробоскопического эффекта, то есть если они будут установлены в токарной мастерской, то при определенной частоте вращения шпинделя токарного станка и другого оборудования – вам может казаться, что он неподвижен, что может вызвать травмы. С электронным балластом такого не произойдет.

Так как они намотаны в противофазе (начала обмоток помечены точками, обратите внимание на схеме), то импульсы управления противоположны друг другу. Поэтому транзисторы открываются по очереди, ведь если их открыть одновременно, то они просто замкнут выход диодного моста и что-нибудь из этого сгорит. Рабочая обмотка одни концом подключена к точке между транзисторами, а вторым к рабочим дросселю и конденсатору, через нее происходит питание лампы.

Что такое ЭПРА и для чего он нужен

Применение электронной пуско-регулирующей аппаратуры или аппарата (сокращенно ЭПРА) дает существенную прибавку к сроку полезной эксплуатации осветительного оборудования этого вида.

ЭПРА – это очередной виток развития систем зажигания лампы. ЭПРА выпускается в виде отдельного модуля с контактами для подачи напряжения питания и контактами для подключения одной или нескольких ламп. Такой блок пришел на замену простой, но морально устаревшей схемы с дросселем и стартером. Такой конструкцией обычно оснащаются все современные светильники.

Т.е. схема состоит всего из двух компонентов: люминесцентной лампы и электронного пускателя. С точки зрения электрика это намного проще классической схемы светильника при использовании электромагнитного дросселя и стартера. На клеммы N и L подается сетевое напряжение. Вывод ground – заземление. Для работы ЭПРА подключение заземляющего контакта не является обязательным и служит лишь для безопасной эксплуатации.

ЭПРА для люминесцентных светильников: что это?

На сегодня комплект стартер+дроссель, несколько уменьшились в размерах, а некоторые модели упакованы в единый корпус. Примеры на фото.

ЭПРА для люминесцентных ламп

Люминесцентный светильник, который снабжен ЭПРА, начинает работать, проходя несколько основных этапов.

Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.


После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Что такое

Балласт для ламп дневного света – это пускорегулирующий аппарат. Данное устройство подсоединяется между разрядными лампами и сетью. Это делается для ограничения подачи тока и его регулировки до нужного значения. Газоразрядный источник света с отрицательным сопротивлением – отличный пример данной схемы.


Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

Что представляет собой балласт

Балласт для ЛДС (ламп дневного света) относится к категории пускорегулирующих устройств, которые используются в качестве ограничителя тока. Необходимость в них возникает, если электрической нагрузки недостаточно для эффективного ограничения потребляемого тока.

В качестве примера можно привести обычный источник света, относящийся к категории газоразрядных. Он представляет собой устройство, у которого отрицательное сопротивление.

В зависимости от реализации, балласт может представлять собой:

  • обычное сопротивление ;
  • емкость (обладающую реактивным сопротивлением), а также дроссель;
  • аналоговые и цифровые схемы.

Рассмотрим варианты реализации, получившие наибольшее распространение.


Работа осуществляется по следующему принципу:

ЭПРА для светильника: устройство, назначение и схемы электронного балласта для люминесцентных ламп

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Читайте также:  Люминесцентные лампы: параметры, устройство, схема, плюсы и минусы по сравнению с другими

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

Особенности электронного балласта

Время на чтение:

Электронный балласт (ЭБ) — это устройство, которое ограничивает ток через электрическую нагрузку осветительного прибора. Он чаще всего используется, когда нагрузка, например, дуговой разряд, испытывает падение напряжения на клеммах при увеличении тока. Если этому процессу не препятствовать, он будет протекать, пока источник тока или сам прибор не будет выведен из строя. Чтобы этого не произошло, в схему включают балласт, обеспечивающий положительное или реактивное сопротивление, ограничивающее ток.

Пускорегулирующее устройство для люминесцентных ламп можно использовать для ограничения тока в обычной цепи с положительным сопротивлением. До появления твердотельного зажигания автомобильные системы зажигания обычно включали балластный резистор для регулирования напряжения, подаваемого на систему зажигания. Сегодня в современных устройствах освещения последовательные резисторы используются в качестве ЭБ для управления током через светодиоды.

Модель ЭБ


Пускорегулирующее устройство для люминесцентных ламп можно использовать для ограничения тока в обычной цепи с положительным сопротивлением. До появления твердотельного зажигания автомобильные системы зажигания обычно включали балластный резистор для регулирования напряжения, подаваемого на систему зажигания. Сегодня в современных устройствах освещения последовательные резисторы используются в качестве ЭБ для управления током через светодиоды.

Как работает электронный пускорегулирующий аппарат

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь
  • Две – управляющие. В каждой по четыре витка

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала

Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.



Далее происходит следующее:

Универсальный электронный балласт с теплым стартом для люминесцентных ламп Т8

Электронные балласты, они же ЭПРА (электронный пускорегулирующий аппарат), служат для розжига и поддержания рабочего режима газоразрядных ламп (в данном случае – люминесцентных). Преимущества электронного балласта перед обычным дросселем и стартером очевидны, это и отсутствие мерцаний ламп при запуске и более высокий коэффициент мощности и значительно более низкий коэффициент пульсаций светового потока (для сравнения: у лампы, включенной с обычным дросселем и стартером пульсации светового потока составляют порядка 40÷60%, с дешевым электронным балластом около 15%), а также более низкая стоимость и тд. В наше время, практически каждый люминесцентный светильник, будь то офисный или домашний, оснащен электронным балластом.

По схемотехнике существующие ЭПРА можно поделить на две группы. Первая – это балласты с холодным стартом, т.е. без предварительного подогрева катодов ламп. Представляют собой полумостовой преобразователь с автозапуском на двух мощных высоковольтных транзисторах ZEN13007 и пассивным корректором мощности. Таких балластов подавляющее большинство. Некоторые самые дешевые модели, обычно китайского производства, могут не иметь даже входного помехоподавляющего фильтра и схемы защиты от перегрузок. Вторая группа – балласты с теплым стартом и активным корректором мощности. Построены они на специализированных микросхемах, например на распространённом семействе микросхем от International Rectifier IR2166, IR2168 и др. Отличаются очень низким коэффициентом пульсаций светового потока – 2÷5% и высоким коэффициентом мощности до 0,98. О варианте такого устройства и пойдет речь в этой статье. При его разработке стояла задача разработать универсальный балласт c теплым стартом для люминесцентных ламп Т8 с характеристиками, не уступающими дорогим промышленным образцам и возможностью подключения разного числа ламп различной мощности. В этом его основная отличительная особенность – семь конфигураций (вариантов) подключения ламп: 1х18 (1 люминесцентная лампа типа Т8 мощностью 18Вт), 1х36, 1х58, 2х18, 2х36, 3х18, 4х18. Все промышленные аналоги позволяют не более двух вариантов подключения, например 1х36 и 2х36. Схема устройства на приведена на рис.1

Рис.1. Схема универсального ЭПРА с теплым стартом на ICB1FL02G

Основные характеристики:
Входное переменное напряжение, В………………………………110÷250
Максимальный потребляемый ток (4 лампы по 18Вт), мА………330÷350
Коэффициент мощности (4 лампы по 18Вт), не менее. …………0,98
Коэффициент пульсаций светового потока не более, %. 5
КПД не менее………………………………. 0,9
Частота предварительного прогрева, кГц………………………….55
Частота розжига, кГц………………………………………………..48
Рабочая частота, кГц………………………………………………. 41

Читайте также:  Почему светодиодные лампы горят при выключенном выключателе: причины и решения

Балласт построен на специализированной микросхеме-контроллере электронного балласта люминесцентных ламп – ICB1FL02G, разработанной фирмой Infineon, подробное описание работы микросхемы в [1]. ICB1FL02G по сравнению с IR2166 и IR2168 более функциональна, требует меньшего числа внешних элементов и как показала практика, более стабильна и надежна (это субъективное мнение автора). Работу схемы можно разделить на три этапа: предварительный прогрев катодов лампы, розжиг и рабочий режим. Предварительный прогрев реализован следующим образом. Сразу же после включения, тактовый генератор микросхемы начинает работать на частоте около 125кГц. Через 10мс его частота плавно уменьшится до 65кГц – это частота предварительного прогрева, которая задается резистором R13. Это значение гораздо выше резонансной частоты выходного балластного контура L2С16, поэтому, прикладываемое к катодам ламп напряжение будет недостаточным для их розжига. Начинается предварительный прогрев ламп, длительность которого задается резистором R14 и может быть выбрана от 0 до 2с (в данном случае выбрана 1с.). В течение этого времени частота остается неизменной. За время предварительного прогрева катоды ламп достаточно прогреются высокочастотным током, а газ в лампах начнет частично ионизироваться. В итоге последующий розжиг пройдет в менее стрессовом режиме для нитей ламп и с меньшими бросками тока через силовые ключи VT2, VT3. Функция предварительного прогрева значительно, иногда в несколько раз, увеличивает срок службы люминесцентной лампы. По истечении времени предварительного прогрева, в следующие 40 мс, частота тактового генератора микросхемы снова начнет понижаться. По мере ее приближения к резонансной частоте контура L2С16, напряжение, прикладываемое с обкладок конденсатора С16 к катодам ламп, начнет резко возрастать и при достижении 600÷800В произойдет розжиг. Если в этот момент времени напряжение на токовом резисторе R23 достигнет порога 0,8В, а это может произойти, например, при попытке включить балласт без нагрузки или при неисправности одной из ламп, контроллер микросхемы прекратит дальнейшее снижение частоты преобразователя и вновь начнет повышать ее, что в свою очередь вызовет уменьшение напряжения на С16. Это делается с целью избежать чрезмерного скачка тока и напряжения на выходе преобразователя. При уменьшении падения напряжения ниже 0,8В на R23, частота вновь начнет понижаться. Этот процесс может повториться несколько раз, пока не будет получен сигнал об успешном розжиге. Сигналом об успешном розжиге служит появление синусоидального тока амплитудой не более 2,5мА на выв. 13 D1 и напряжения трапецеидальной формы размахом не более 3,2В на выв.12 D1. Максимальное время розжига может составлять 235мс. В случае неудачного розжига ламп, микросхема перейдет в аварийный режим и прекратит коммутацию выходных ключей VT2 и VT3. При успешном розжиге, D1 перейдет в рабочий режим, частота тактового генератора опустится до рабочего значения, которое задается резистором R12. Все три этапа работы балласта: прогрев, розжиг и рабочий режим иллюстрирует осциллограмма на рис.2 (осциллограф подключен к контактам 3, 9 разъема XT2). На рис.3 осциллограмма напряжения в рабочем установившемся режиме с подключенными 4-мя 18Вт лампами.


Рис.2. Прогрев, розжиг и рабочий режим


Рис.3. Рабочий режим

В рабочем режиме активируются дополнительные защитные функции: EOL (End Of Life) – окончание срока службы лампы, защита от работы в емкостном режиме, защита от выпрямительного эффекта ламп. В случае резкого увеличения тока через лампу, что может произойти к окончанию срока ее службы, увеличится до 215мкА ток в цепи: плюс источника питания, R25…R29, нить лампы, R20…R17, внутренний датчик тока D1. Это вызовет срабатывание защиты EOL и балласт отключится. Если положительный и отрицательный полупериоды тока, текущего по этой цепи не равны по амплитуде, это означает, что лампа работает в выпрямительном режиме. То есть ток через лампу в одну сторону больше, чем в другую. Такой эффект вызывается преждевременным износом одного из катодов лампы. В этом случае балласт также переходит в аварийный режим. Если во время работы балласта нарушится контакт в цепи ламп, например, неисправный ламподержатель или перегорит одна из нитей, сопротивление цепи резко возрастет и выходной каскад перейдет в емкостной режим работы, что в свою очередь может вызвать резонанс. В этом случае напряжение на выв.12 D1 превысит уровень 1,6В и вызовет срабатывание защиты, балласт отключится. Также выводы 13 (LVS – Lamp Voltage Sense) и 12 (Res–restart) D1 служат для контроля подключения ламп в течение всего времени работы балласта. Если во время работы балласта вывернуть одну из ламп – балласт отключится.

Активный корректор мощности собран на элементах T1,VT1,VD2,C3. Его назначение – максимально приблизить форму потребляемого тока к форме напряжения, тем самым свести к минимуму реактивную мощность. Подробно принцип его работы описан в [1] и[2]. Особенность данного корректора – возможность работы как в режиме критической проводимости (Critical Conduction Mode – CCM), так и в режиме прерывистой проводимости (Discontinuous Conduction Mode – DCM). Делитель R8…R11С5 служит для контроля мгновенного значения напряжения питания и определения времени закрытия VT1. Вторичная обмотка Т1, подключенная через ограничивающий резистор R6 к выв.7 D1, необходима для определения момента, когда ток через Т1 достигнет нулевого значения. Как только это произойдет, на затвор VT1 будет подан открывающий импульс. Обе обмотки Т1 должны быть обязательно синфазны.

Питание микросхемы в первый момент времени осуществляется от цепочки R1…R3. В дальнейшем – от выходного каскада через стабилизатор С9С10R24VD4VD5C8.

Для подключения к балласту 4-х ламп, производитель микросхемы рекомендует использовать два выходных балластных контура, включенных параллельно, в каждом контуре по две, последовательно соединенные лампы [1]. Но тогда возникает следующая проблема. При даже незначительном разбросе параметров выходного LC-контура пары ламп могут разжигаться неодновременно, что не очень приятно для восприятия. С другой стороны, четыре последовательно соединенные лампы разжечь довольно проблематично, так как они не успевают достаточно прогреться во время предварительного прогрева и для розжига потребуется гораздо большая энергия. К тому же нельзя забывать и о потерях на соединительных проводах. Решением стало оставить один выходной контур, но добавить маломощный вспомогательный понижающий трансформатор Т2. Он компенсирует потери в местах соединения ламп, улучшает прогрев ламп и облегчает их розжиг. Экспериментально было установлено, что мощность Т2 должна составлять 8÷10% от общей мощности ламп и коэффициент трансформации должен быть 20÷30. При подключении к балласту ламп 1х18, 2х18, 1х36, трансформатор Т2 и разделительные конденсаторы С17, С20 и С21 необходимо удалить, чтобы избежать приложения к лампам излишней мощности.

В документации [1] приводится расчет всех основных элементов балласта, за исключением расчета выходного контура L2C16. Элементы L2 и С16 рассчитывались следующим образом. Максимальная мощность ламп (4х18 или 2х36) составляет P=72Вт, рабочая частота выбрана f = 41кГц, частота розжига fign= 48кГц [1], с использованием теплого старта оптимальное напряжение розжига Uign700В. Из соотношения энергии получим:

Из имеющихся был выбран конденсатор 6,8 нФ. Теперь определяем индуктивность L2:

С другой стороны индуктивность балластного дросселя должна соответствовать условию:

Uin напряжение питания; Ulamp – рабочее напряжение на лампах, т.к. рабочее напряжение 18Вт лампы составляет около 56В, то Ulamp=4*56B=224B; ton – время открытого ключа, при f = 41кГц, ton 11,5мкс (согласно [1]); Ilamp 0,33A– рабочий ток ламп. Отсюда:

Определяем максимальный ток дросселя L2, он будет равен току конденсатора С16 в момент резонанса:

Выбираем подходящий по габаритной мощности сердечник, например EV25/13/13.

Оценим требуемый зазор g (mm):

Примем индукцию В = 0,22Тл. Имеем:

Рассчитаем число витков N дросселя L2:

где: AL – индуктивность на виток (сердечник с зазором), (Г); AL – индуктивность на виток (сердечник без зазора, справоч.), ); le – длина средней линии сердечника, (мм); µe – начальная магнитная проницаемость сердечника, справоч. Для сердечника EV25/13/13, материал N87: AL = 2400 нГ, le = 59 мм; µe = 1520. Отсюда:

Проверим максимальную индукцию:

Дроссель намотан проводом 4х0,2мм. При возможности обмотку желательно разделить на секции.

Печатная плата балласта односторонняя, все выводные элементы на верхней стороне, smd – на нижней. Чертеж печатной платы на рис.4, рис.5. 3D модель печатной платы на рис.6. Фото готового устройства на рис.7, рис.8. Конденсатор С16 – металлопленочный, на напряжение 1600В. С17, С19, С10 – металлопленочные или дисковые керамические на 1000В. С20, С21 – 100В. Диоды VD2, VD3 – быстродействующие на обратное напряжение не менее 600В. VT1…VT3 можно заменить на SPP03N60C3 или аналогичные. Трансформатор Т1 намотан на сердечнике Е25/13/7, материал N27, немагнитный зазор 1.6мм. Первичная обмотка содержит 184 витка проводом 4х0.2мм, вторичная – 14 витков проводом 0.3мм. Т2 намотан на сердечнике Е16/8/5, материал N27, без зазора. Обмотка 1-2 содержит 208 витков; обмотки 11-14, 6-7, 10-13 по 24 витка; обмотки 4-5, 8-9 по 12 витков. Диаметр провода всех обмоток Т2 – 0.18мм. Частотозадающие резисторы R12…R14 желательно выбрать с допуском 0.5÷1%. Помехоподавляющий дроссель L1, любой стандартный с индуктивностью 20мГн и рассчитанный на ток не менее 0,5А. Правильно собранное устройство обычно начинает работать сразу и никаких настроек не требуется.

Рис.4. Печатная плата, верхняя сторона.

Рис.5. Печатная плата, нижняя сторона (отзеркалено).

Рис.6. 3D модель печатной платы (Altium Designer).

Рис.7. Внешний вид готового балласта.

Рис.8. Внешний вид готового балласта.

Рис.2. Прогрев, розжиг и рабочий режим

Как устроены и работают пускорегулирующие аппараты люминесцентных ламп

Класс газоразрядных источников света, к которому относятся люминесцентные лампы, требует использования специальной аппаратуры, осуществляющей прохождение дугового разряда внутри стеклянного герметичного корпуса.

Устройство и принцип работы люминесцентной лампы

Ее форма изготавливается в виде трубки. Она может быть прямой, изогнутой или закрученной.

Поверхность стеклянной колбы внутри покрыта слоем люминофора, а на ее концах расположены вольфрамовые нити накала. Внутренний объем герметичен, заполнен инертным газом невысокого давления с парами ртути.

Свечение люминесцентной лампы происходит за счет создания и поддержания разряда электрической дуги в инертном газе между нитями накала, которые работают по принципу термоэлектронной эмиссии. Для ее протекания через вольфрамовую проволоку пропускается электрический ток, обеспечивающий нагрев металла.

Одновременно межу нитями накала прикладывается высокая разность потенциалов, обеспечивающая энергию протекания электрической дуги между ними. Пары ртути улучшают путь тока для нее в среде инертного газа. Слой люминофора преобразовывает оптические характеристики потока исходящих световых лучей.

Обеспечением прохождения электротехнических процессов внутри люминесцентной лампы занимается пускорегулирующая аппаратура . Ее сокращенно называют аббревиатурой ПРА.

Типы пускорегулирующих аппаратов

В зависимости от используемой элементной базы устройства ПРА могут быть выполнены двумя способами:

1. электромагнитной конструкцией;

2. электронным блоком.

Первые модели люминесцентных ламп работали исключительно за счет первого метода. Для этого применялись:

Электронные блоки появились не так давно. Их стали выпускать после массового, бурного развития предприятий, производящих современный ассортимент электронной базы на основе микропроцессорных технологий.

Электромагнитные пускорегулирующие аппараты

Принцип работы люминесцентной лампы с электромагнитным ПРА (ЭМПРА)

Стартерная схема запуска с подключением электромагнитного дросселя считается традиционной, классической. Благодаря относительной простоте и дешевизне она остается популярной, продолжает массово использоваться в схемах освещения.

После подачи сетевого питания на лампу напряжение через обмотку дросселя и вольфрамовые нити накала подводится к электродам стартера. Он создан в виде малогабаритной газоразрядной лампы.

Поступившее на ее электроды напряжение сети вызывает между ними тлеющий разряд, формирующий свечение инертного газа и нагрев его среды. Находящийся рядом биметаллический контакт воспринимает его, изгибается. изменяя свою форму, и замыкает промежуток между электродами.

В цепи электрической схемы образуется замкнутый контур и по нему начинает течь ток, нагревая нити накала люминесцентной лампы. Вокруг них образуется термоэлектронная эмиссия. Одновременно происходит разогрев паров ртути, находящихся внутри колбы.

Образовавшийся электрический ток примерно наполовину снижает напряжение, приложенное от сети на электроды стартера. Тлеющий между ними разряд снижается, а температура падает. Биметаллическая пластина уменьшает свой изгиб, разъединяя цепь между электродами. Ток через них прерывается, а внутри дросселя создается ЭДС самоиндукции. Она мгновенно создает кратковременный разряд в подключенной к ней схеме: между нитями накала люминесцентной лампы.

Его величина достигает нескольких киловольт. Ее хватает для создания пробоя среды инертного газа с подогретыми парами ртути и разогретыми нитями накала до состояния термоэлектронной эмиссии. Между концами лампы возникает электрическая дуга, являющаяся источником света.

В то же время величины напряжения на контактах стартера не хватает для пробоя его инертного слоя и повторного замыкания электродов биметаллической пластины. Они так и остаются в разомкнутом состоянии. Стартер в дальнейшей схеме работы участие не принимает.

После запуска свечения ток в цепи необходимо ограничивать. Иначе возможно перегорание элементов схемы. Эта функция тоже возложена на дроссель. Его индуктивное сопротивление ограничивает возрастание тока, предотвращает выход лампы из строя.

Схемы подключения электромагнитных ПРА

На основе изложенного выше принципа работы люминесцентных ламп для них создаются различные схемы подключения через пускорегулирующую аппаратуру.

Самой простой является включение дросселя и стартера на одну лампу.

При таком способе в схеме питания возникает дополнительное индуктивное сопротивление. Чтобы уменьшить реактивные потери мощности от его действия используют компенсацию за счет включения на входе схемы конденстора, сдвигающего угол вектора тока в противовположную сторону.

Если мощность дросселя позволяет использовать его для работы нескольких люминесцентных ламп, последние собирают в последовательные цепочки, а для запуска каждой используют индивидуальные стартеры.

Читайте также:  Как собрать сенсорный выключатель своими руками: описание прибора и схема сборки

Когда требуется компенсировать действие индуктивного сопротивления, то применяют тот же прием, что и раньше: подключают компенсационный конденсатор.

Вместо дросселя можно использовать в схеме автотрансформатор, который обладает тем же индуктивным сопротивлением и позволяет регулировать величину выходного напряжения. Компенсацию потерь активной мощности на реактивной составляющей осуществляют подключением конденсатора.

Автотрансформатор может использоваться для освещения несколькими лампами, подключаемыми по последовательной схеме.

При этом важно создавать резерв его мощности для обеспечения надежной работы.

Недостатки эксплуатации электромагнитных ПРА

Габариты дросселя требуют создания отдельного корпуса для пускорегулирующей аппаратуры, занимающего определенное пространство. При этом он издает хоть и небольшой, но посторонний шум.

Конструкция стартера не отличается надежностью. Периодически лампы гаснут из-за его неисправностей. При отказе стартера происходит фальстарт, когда можно визуально наблюдать несколько вспышек до начала стабильного горения. Это явление влияет на ресурс нитей накала.

Электромагнитные ПРА создают относительно высокие потери энергии, снижают КПД.

Умножители напряжения в схемах запуска люминесцентных ламп

Эта схема часто встречается в любительских разработках и не используется в промышленных образцах, хотя не требует сложной элементной базы, проста в изготовлении, работоспособна.

Принцип ее работы заключается в ступенчатом увеличении питающего напряжения сети до значительно бо́льших значений, вызывающих пробой изоляции среды инертного газа с парами ртути без их разогрева и обеспечения термоэлектронной эмиссии нитей накала.

Такое подключение позволяет использовать даже баллоны ламп с перегоревшими нитями накала. Для этого в их схеме с обеих сторон колбы просто шунтируют внешними перемычками.

Подобные схемы обладают повышенной опасностью к поражению человека электрическим током. Ее источником является выходящее с умножителя напряжение, которое можно довести до киловольта и больше.

Мы не рекомендуем эту схему к использованию и публикуем ее для разъяснения опасности создаваемых ею рисков. Заостряем на этом вопросе ваше внимание специально: сами не применяйте этот способ и предупреждайте своих коллег об этом главном недостатке.

Электронные пускорегулирующие аппараты

Особенности работы люминесцентной лампы с электронным ПРА (ЭПРА)

Все физические законы, происходящие внутри стеклянной колбы с инертным газом и парами ртути для образования разряда дуги и свечения остались без изменений в конструкциях ламп, управляемых электронными пускорегулирующими устройствами.

Поэтому алгоритмы работы ЭПРА остались теми же, что и у их электромагнитных аналогов. Просто старая элементная база заменена современной.

Это обеспечило не только высокую надежность пускорегулирующей аппаратуры, но и ее маленькие габариты, позволяющие устанавливать ее в любом подходящем месте, даже внутри цоколя обычной лампочки Е27, разработанного еще Эдисоном для ламп накаливания.

По этому принципу работают малогабаритные энергосберегающие светильники с люминесцентной трубкой сложной закрученной формы, которые по габаритам не превышают лампы накаливания и создаются для подключения к сети 220 через старые патроны.

В большинстве случаев для электриков, занимающихся эксплуатацией люминесцентных ламп, достаточно представлять простую схему подключения, выполненную с большим упрощением из нескольких составных частей.

Из электронного блока ЭПРА для эксплуатации выделяются:

входная цепь, подключаемая к сети питания 220 вольт;

две выходных цепи №1 и №2, присоединяемые к соответствующим нитям накала.

Обычно электронный блок выполняется с высокой степенью надежности, длительным ресурсом. На практике чаще всего у энергосберегающих ламп при эксплуатации происходит разгерметизация корпуса колбы по разным причинам. Из него сразу уходит инертный газ и пары ртути. Такая лампа уже не загорится, а электронный блок у нее остается в исправном состоянии.

Его можно использовать повторно, подключить на колбу соответствующей мощности. Для этого:

цоколь лампы аккуратно разбирают;

из него извлекают электронный блок ЭПРА;

помечают пару проводов, задействованных в схеме питания;

маркируют проводники выходных цепей на нити накала.

Дальше остается только переподключить схему электронного блока на целую, исправную колбу. Она будет работать дальше.

Устройство электромагнитных ПРА

Конструктивно электронный блок состоит из нескольких частей:

фильтра, устраняющего и блокирующего электромагнитные помехи, поступающие из питающей сети в схему или создаваемые электронным блоком при работе;

выпрямителя синусоидальных колебаний;

схемы коррекции мощности;

электронного балласта (аналог дросселя).

Электрическая схема инвертора работает на мощных полевых транзисторах и создается по одному из типовых принципов: мостовой или полумостовой схеме их включения.

В первом случае работает четыре ключа в каждом плече моста. Такие инверторы создаются для преобразования больших мощностей у осветительных систем в сотни ватт. Полумостовая схема содержит всего два ключа, обладает меньшим КПД, используется чаще.

Обе схемы управляются от специального электронного блока — микродрайвера.

Как работает электронная ПРА

Для обеспечения надежного свечения люминесцентной лампы алгоритмы ЭПРА разбиты на 3 технологических этапа:

1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;

2. поджигание дуги подачей импульса высоковольтного напряжения;

3. обеспечение стабильного протекания дугового разряда.

Такая технология позволяет быстро включать лампу в работу даже при отрицательной температуре, обеспечивает мягкий запуск и выдачу минимально необходимого напряжения между нитями накала для хорошего свечения дуги.

Одна из простых принципиальных схем подключения электронного ПРА к люминесцентной лампе показана ниже.

Диодный мост на входе выпрямляет переменное напряжение. Его пульсации сглаживаются конденсатором С2. После него работает двухтактный инвертор, включенный по полумостовой схеме.

В его состав входят 2 n-p-n транзистора, создающие колебания высокой частоты, которые управляющими сигналами подаются в противофазе на обмотки W1 и W2 трехобмоточного тороидального в/ч трансформатора L1. Его оставшаяся обмотка W3 выдает высокое резонансное напряжение на люминесцентную лампу.

Таким образом, при включении питания до начала зажигания лампы в резонансном контуре создается максимальный ток, который обеспечивает нагрев обеих нитей накала.

Параллельно лампе подключен конденсатор. На его обкладках создается большое резонансное напряжение. Оно запускает электрическую дугу в среде инертных газов. Под ее действием обкладки конденсатора закорачиваются и резонанс напряжений прерывается.

Однако свечение лампы не прекращается. Она продолжает работать автоматически за счет оставшейся доли приложенной энергии. Индуктивное сопротивление преобразователя регулирует ток, проходящий через лампу, поддерживает его в оптимальном диапазоне.

1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;

ЭПРА для светильника: устройство, назначение и схемы электронного балласта для люминесцентных ламп

Современные электронные балласты своми руками.

Автор: Анисимов Иван
Опубликовано 01.01.1970

Освещение лампами дневного света имеет значительное преимущество перед лампами накаливания: экономичность, более длительный срок службы, высокий КПД, малое количество тепла рассеиваемого лампой, спектр света излучаемого данными лампами более близок к естественному, по сравнению со столь привычными накальными. И естественно имеют недостатки, это: сложность включения ламп дневного освещения, возникновение стробоскопических эффектов на движущихся механизмах, сравнительная дороговизна.
Несмотря на сильное развитие современных электронных балластов для питания ламп дневного освещения (ЛДС), стандартной схемой включения ЛДС принято считать схему изображенную на рисунке.

Принцип действия прост, но всё таки требует определённых условий для нормального эксплуатирования ЛДС. Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (пусковое устройство), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для крепления в схеме лампы. При включении лампы согласно вышеуказанной схеме, а на электроды лампы и стартера подается напряжение сети, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера, примерно 0,01. 0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда 0,2. 0,4 с контакты стартера замыкаются, и по цепи начинает течь пусковой ток, величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения зажигающий лампу. Время разогрева электродов лампы составляет 0,2. 0,8 секунд что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс может повториться. Общая длительность пускового режима лампы составляет 5. 15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1. 2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5. 10 пФ. Дроссель, представляющий собой обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу (иногда дроссель заменяют компенсирующим конденсатором, лампочкой накаливания небольшой мощности). На рисунке 1, приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. Проблема рассматриваемой схемы в том что в момент размыкания стартера не всегда совпадает с полуволной напряжения сети, и срабатывание стартера происходит вхолостую. Схема конечно куда проще, чем те которые будут описываться ниже. Но всё таки схемы рассматриваемые далее находят своё применение в действительно качественных и экономичных системах освещения.
И так.

Электронный балласт на микросхеме IR2153

Что же относительно конкретных схемных решений, то я постараюсь осветить решения на основе микросхем фирмы-производителя International Rectifier.
Схема представленная на рисунке, представляет собой преобразователь сетевого напряжения 220 В, 50 Гц в 160 В 33 кГц. Именно полученные выходные параметры и являются теми факторами, значительно повышающими эксплуатационные характеристики источников света на основе ЛДС.
Первый фактор: Полностью исключается беспорядочное мерцание лампы в момент первоначального запуска.
Второй: Возникающий во время старта потенциал, достаточный для гарантированного поджога лампы с первого раза. Время запуска составляет примерно 0,5 сек.
Третий: Благодаря высокочастотной коммутации, газ в лампе не успевает деионизироваться в периодах спадания синусоиды питающего тока до нуля, а значит для нормальной работы лампы требуется меньшее напряжение. Это основная экономия электроэнергии.
Четвёртый: Полное отсутствие стробоскопического эффекта на движущихся механизма, вследствии отсутствия 100Гц (удвоенной частоты сети) пульсаций света.
Пятый: Требуется дроссель с меньшей индуктивностью, а значит и с меньшими размерами, весом, тепловыми, омическими потерями и стоимость.
Перед выше перечисленым можно смело ставить знак “+”
Ну и куда же деться от недостатков, они у нас таковы:
Первый: Относительная сложность схемы.
Второй: Относительно высокая стоимость изготовления такого аппарата (если речь идёт о питании одной лишь лампы).
Третий: Высокий уровень ЭМИ.

Схема состоит из основных узлов: фильтр питающего напряжения, выпрямитель сетевого напряжения, генератор-драйвер управления высоковольтными MOSFET транзисторами, полумост ключей и нагрузка в роли которой выступает лампа с балластным дросселем.
Ничего особо необычного схема не содержит и не является сложной.
Сетевое напряжение подаётся через сетевой фильтр L1, C2. Поступает на выпрямитель VD1, C3. Сформированные на конденсаторе С3 310В напрямую запитывают полумост транзисторов VT1, VT2 и через гасящий резистор R2 получаем необходимые для работы микросхемы 9-10В.
После подключения к сети примерно через 0,5 секунды на выходе схемы (правая по схеме обкладка конденсатора С8) появляется меандр в 165В с небольшой “полочкой” между открытыми состояниями транзисторов. Поданное на лампу ВЧ напряжение в течении ещё примерно 0,5 сек. прогревает катоды. Проявляется это в виде кратковременного тусклого оранжевого свечения катодов, после достаточной ионизации газа в колбе лампы, за счёт высоковольтных выбросов с дросселя L2, газовый промежуток пробивается. И, как же без последствий — лампа зажглась! Дальнейшая работа сопровождается прогревом лампы и индуктивности в результате чего яркость несколько увеличивается.
“Двигателем” схемы является микросхема генератор-драйвер. В содержимом которой можно разобраться исходя из вот этого рисунка:

Микросхема содержит подобие 555-го таймера, фазорасщепляющий триггер, формирователь “мёртвого” промежутка позволяющий избежать сквозного тока в выходных ключах, схему питания драйвера верхнего ключа, схему контроля заниженного напряжения, стабилитрон основного питания и даже цепь задержки, позволяющая выровнять время распространения сигналов по каналам верхнего и нижнего ключа, а также ещё несколько дополнительных узлов, в которых разбираться нет смысла.

Автор: Анисимов Иван
Опубликовано 01.01.1970

Электромагнитные устройства

Агрегат работает благодаря индуктивному сопротивлению дросселя. Его встраивают в схему последовательно лампе.

Для включения осветительного прибора также необходим стартер. Это небольшое устройство, напоминающее лампу, из категории газоразрядных. Внутри него находятся электроды из биметалла.

Стартер подключают к прибору параллельным способом.

При наличии электромагнитного балласта люминесцентная лампа работает по следующей схеме:

  1. При поступлении напряжения в стартере появляется разряд. В результате происходит разогрев электродов, вследствие чего они замыкаются.
  2. Рабочий ток увеличивается в несколько раз. Этот процесс ограничивает только внутреннее сопротивление дросселя.
  3. На фоне роста показателей тока разогреваются электроды лампы.
  4. При остывании стартера происходит размыкание цепи.
  5. Происходящие процессы приводят к появлению относительно высокого напряжения. В результате происходит «зажигание» источника внутри колбы.

Когда осветительный прибор перейдет в обычный режим работы, его напряжение будет существенно ниже сетевого, чего недостаточно для активации стартера. Поэтому он находится в разомкнутом виде и не влияет на функционирование лампы.

При наличии электромагнитных модулей на включение осветительных приборов уходит относительно много времени. В процессе эксплуатации это время постоянно увеличивается, что является существенным недостатком изделий. Такие источники света мигают в процессе работы, поэтому их не рекомендуется использовать в жилых помещениях. Также они довольно шумны и потребляют много электроэнергии.


Когда осветительный прибор перейдет в обычный режим работы, его напряжение будет существенно ниже сетевого, чего недостаточно для активации стартера. Поэтому он находится в разомкнутом виде и не влияет на функционирование лампы.

Ссылка на основную публикацию
×
×