Как произвести расчет ветрогенератора: формулы + практический пример расчета

Бытовой ремонт №1

Выберите надежных мастеров без посредников и сэкономьте до 40%!

  1. Заполните заявку
  2. Получите предложения с ценами от мастеров
  3. Выберите исполнителей по цене и отзывам

Разместите задание и узнайте цены

Ветрогенераторы как источник электроэнергии не так давно завоевали популярность у жителей загородных участков. Перед установкой необходимо сделать расчет ветрогенератора для своей местности. Этот экологически чистый прибор для выработки электричества бывает двух видов:

  • с горизонтальной осью
  • с вертикальной осью

Последние более эффективны и технологичны. Единственным минусом вертикальных ветрогенераторов является их высокая цена. Часто такие приборы окупаются в течение пятнадцати лет. Поэтому ветрогенераторы используют как дополнительный источник энергии. Установить их можно своими руками.

Как выбрать ветрогенератор

Если грамотно подойти к вопросу покупки вертикального ветрогенератора, можно увеличить его производительность и сократить срок окупаемости. Сначала следует рассмотреть разные виды вертикальных ветрогенераторов:

  • ортогональные генераторы, которые не нуждаются в направляющих механизмах. Они имеют несколько лопастей параллельно основной оси. Работа такого генератора не зависит от направления ветра
  • ветрогенераторы с ротором Дарье. Они имеют две-три лопасти на плоском винте. Главное достоинство конструкции в том, что ее можно монтировать на уровне земли
  • генераторы с ротором Савониуса. Они очень эффективны, так как работа винта может быть проведена на низких скоростях, что существенно снижает расход аккумулятора
  • устройства с большим количеством лопастей на оси. Это более усовершенствованная версия ортогонального прибора. Они очень эффективны, но и цены на них ощутимо выше
  • приборы с геликоидным ротором. Они также произошли от ортогонального прибора. Благодаря своей сложной технологии лопасти на оси оказывают небольшую нагрузку на катушку. Это повышает срок эксплуатации генератора. Но и на них цена очень высока

Самыми популярными ветрогенераторами являются ортогональные и с ротором Савониуса. Почти каждый ветрогенератор с вертикальной осью работает на неодимовых магнитах. Они достаточно эффективны, при этом стоимость не слишком высока. Чтобы не переплатить при выборе ветрогенератора, можно сделать правильные расчеты своими руками.

Что нужно рассчитать при выборе генератора

Когда вы решили приобрести такой полезный прибор, как ветрогенератор, нужно учитывать следующие параметры:

  • мощность ветрогенератора на неодимовых магнитах. Если в вашей местности нет сильных ветров, вам нужен генератор с маленькой мощностью
  • направление ветра. Если ветра часто меняют направление, вам подойдет только вертикальный ветрогенератор с подвижными лопастями
  • марка. От производителя напрямую зависит цена прибора. Следует помнить, что импортный товар всегда дороже российских аналогов

Конечно, в первую очередь нужно высчитать мощность.

Как сделать расчет ветрогенератора самостоятельно

Чтобы рассчитать мощность ветрогенератора для вашей местности, воспользуйтесь специальными формулами. Сначала нужно рассчитать количество энергии, которую сможет выработать генератор в течение года в вашей местности. Для этого нужно выполнить ряд действий:

  • произвести расчет. На основе результатов будут выбраны длина лопастей и высота башни
  • провести анализ скорости ветра в вашей местности. Это можно сделать своими руками с помощью специального прибора, наблюдая за ветром несколько месяцев, или запросить результаты с местной метеостанции

Методика расчета мощности ветреного потока своими руками подразумевает использование формулы — P*= krV 3S/2, [В т]. В этой формуле используются следующие обозначения:

  • r — плотность воздуха, которая при нормальных условиях составляет 1,225 кг/м3
  • V — скорость потока в м/с
  • S — площадь потока в квадратных метрах
  • k — коэффициент эффективности турбины ветрогенератора в значении 0,2-0,5

С помощью этих расчетов вы сможете выявить подходящую мощность для вашей местности. На упаковке ветрогенератора указано, при каком потоке ветра его работа эффективнее всего. Как правило, это значение находится в промежутке 7-11 м/с.

Ветрогенераторы (от ортогонального до Савониуса) являются оптимальным источником дополнительной или основной электроэнергии в частном доме. Если вы сделаете правильный расчет ветрогенератора своими руками, то сможете приобрести подходящий под вашу местность агрегат.

Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?

Обновлено: 4 мая 2019

Важный нюанс при покупке ветряка

Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

Расчет мощности ветрогенератора

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м 3 .

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать?

При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Реальная мощность самодельного ветрогенератора

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Читайте также:  Как сделать тепловой насос для отопления дома своими руками: принцип работы и схемы сборки

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Формула быстроходности ветроколеса выглядит следующим образом:

Где Z — искомая величина (быстроходность),

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Сколько экономии энергии дает ветряк?

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Сколько электроэнергии вырабатывает?

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра для ветряка

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Расчет мощности ветрогенератора для дома или дачи

Для расчета номинальной мощности ветрогенератора для организации электроснабжения частного дома или загородной недвижимости предлагаем воспользоваться следующими принципами

Для выбора ветрогенерирующей электроустановки требуется как можно более точно определить наиболее постоянное направление и среднюю скорость ветра в месте предполагаемого монтажа оборудования. При этом необходимо понимать, что лопасти ветрогенератора начинают вращение при скорости ветра от 2 м/с. Наиболее максимальный коэффициент полезного действия (КПД) установки достигается при скорости ветра 9 – 12 м/с.

Для обеспечения электроэнергией небольшого загородного дома необходим генератор с номинальной мощностью не менее 1 кВт час, вырабатываемых при скорости ветра порядка 8 м/c.

Мощность ветрогенерирующей электроустановки во многом зависит от скорости ветра и диаметра рабочего винта.

Для расчета эксплуатационных характеристик ветряка для небольшого загородного дома можно воспользоваться следующими формулами:

1.Рассчет ветрогенератора по площади вращения

P = 0,6*S*V 3 ,

S – Площадь (м 2 ), перпендикулярная относительно направления ветра;

V – Скорость ветра (метров в секунду).

P – Мощность генератора, кВт

2.Рассчет ветрогенератора по диаметру винта

Р = D 2 *V 3 /7000,

D – Диаметр винта (метров);

V – Скорость ветра (метров в секунду).

P – Мощность генератора, кВт

3.Более сложный расчет с учетом плотности воздушного потока

Более точный расчет можно сделать по следующей формуле:

P = ξ • π • R2 • 0,5 • V3 • ρ • ηред • ηген

ξ – коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина

R – радиус ротора, единица измерения – м

V – скорость воздушного потока, единица измерения – м / с

ρ – плотность воздуха, единица измерения – кг/м3

ηред – КПД редуктора, единица измерения – проценты

ηген – КПД генератора, единица измерения – проценты

Общие рекомендации

Очевидно, что для выбора наиболее оптимального диаметра винта ветрогенератора необходимо знать среднюю скорость ветра на месте планируемой установки. Количество электроэнергии, произведенной ветряком возрастает в кубическом соотношении с повышением скорости ветра. Например, если скорость ветра увеличится в 2 раза, то кинетическая энергия, выработанная ротором, увеличится в 8 раз. Поэтому можно сделать вывод, что скорость ветра является самым важным фактором, влияющим на мощность установки в целом.

Для выбора места установки ветрогенерирующей электроустановки наиболее подойдут участки с минимальным количеством преград для ветра (без больших деревьев и построек) на расстоянии от жилого дома не менее 25-30 метров (не забывайте, что ветрогенераторы весьма громко гудят во время работы). Высота расположения центра ротора ветряка должна быть не менее чем на 3-5 метров выше ближайших построек. На линии ветреного прохода деревьев и построек быть не должно. Для расположения ветрогенератора наиболее подойдут вершины холмов или горные хребты с открытым ландшафтом.

В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:

  • ВЭС + Солнечные батареи
  • ВЭС + Дизель

Комбинированные варианты помогут решить проблемы в регионах, где ветер переменчивый или зависит от времени года, а также данный вариант является актуальным для солнечных батарей.

Ветрогенератор своими руками: расчет винта и генератора переменного тока

Продолжая тему, посвященную ветроэнергетике в домашнем хозяйстве, считаем своим долгом рассказать о конструкции ветрогенератора – ключевого элемента системы. Статья ориентирована на тех, кто планирует собирать «сердце» ветроэнергетической установки своими руками.

Судя по опыту пользователей FORUMHOUSE, которые не привыкли искать легких путей, сборка ветрогенератора своими силами – задача, вполне осуществимая. И первое, что необходимо выполнить для ее успешной реализации – это правильно рассчитать основные элементы установки.

Для того чтобы основные моменты, представленные в настоящей статье, были вам понятны, рекомендуем ознакомиться с материалами, изложенными в ее первой и второй частях.

Из статьи вы узнаете:

  • Как правильно рассчитывать рабочий винт ветрогенератора.
  • Какие типы генераторов больше всего подходят для сборки в домашних условиях.
  • Как рассчитывать рабочие характеристики генератора переменного тока.

Расчет рабочего винта (ветроколеса)

Преобразование механической энергии воздушного потока в энергию электрическую начинается с рабочего винта. Поэтому методику расчета ветроколеса мы рассмотрим в первую очередь. Сделаем это на примере наиболее распространенного трехлопастного винта с горизонтальной осью вращения.

Ключевое правило, которого следует придерживаться, осуществляя расчет ветряка, заключается в следующем: мощность ветрового потока, которую можно снять с рабочих лопастей устройства, должна соответствовать электрической мощности самого генератора. Объясним почему: если мощность винта будет слишком малой, то даже при сильном ветре винт не сможет стронуть с места ротор генератора, находящегося под нагрузкой. Если же, наоборот, винт окажется слишком мощным для генератора, то при сильном ветре он раскрутит ротор до очень высоких оборотов, что неизбежно приведет к разрушению всей установки.

Учитывая этот момент, рассмотрим порядок расчета трехлопастного винта в соответствии с заданными характеристиками генератора. Предположим, что у вас уже есть генератор, с номинальной мощностью 300 Вт*ч (к примеру). Также представим, что свои номинальные характеристики устройство будет демонстрировать при оборотах ротора – 150 об/мин. Если средняя скорость ветра в вашей местности составляет 6 м/сек, то на нее и следует ориентироваться, осуществляя дальнейшие расчеты.

Далее: генератор переменного тока, на который ветроколесо передает вращательный момент, имеет свой собственный КПД (0,6…0,8). При различных условиях эксплуатации данный показатель может опускаться до более низких значений, поэтому в качестве примера возьмем КПД, равный 50%.

Для того чтобы устройство, обладающее подобным КПД, выдало необходимые 300 Вт*ч электрической мощности, на его ротор необходимо подать мощность, в два раза превышающую ту, которую требуется с него снять. То есть, механическая мощность, передаваемая на генератор с ветроколеса, должна быть равна 600 Вт.

Средний КИЭВ (коэффициент использования энергии ветра) у трехлопастных винтов равен 0,4 (это и будет КПД ветроколеса). Следовательно, мощность ветра (Х), которая должна воздействовать на рабочие лопасти ветряка (чтобы снять с них 600 Вт), можно вычислить, решив уравнение:

Х = 600:0,4 = 1500 Ватт.

Итак, количество необходимой энергии нам известно, теперь рассчитаем площадь, ометаемую рабочими лопастями ветроколеса (S).

Вот нашел формулу: P = 0,5 *Q * S * V³ * Cp * Ng

  • P – мощность (Вт);
  • Q – плотность воздуха (1,23 кг/м³);
  • S – площадь ометания ветроколеса (м²);
  • V – скорость ветра (м/с);
  • CP – коэффициент использования энергии ветра (0,35…0,45);
  • Ng – КПД генератора;
Читайте также:  Как сделать солнечный коллектор для отопления своими руками: пошаговое руководство

Плотность воздуха – неизменна, площадь ометания ротора – тоже.

Эта формула обозначает мощность на выходных клеммах генератора. Учитывая, что значение мощности (1500 Вт) мы изначально взяли с учетом КИЭВ ветроколеса и КПД генератора, последние два значения из формулы убираем.

Мощность ветра, которую воздушный поток передает на ветроколесо, будет равна:

P = 0,5 *Q * S * V³

Все значения, входящие в формулу, нам известны (кроме площади – S). Решив простейшее уравнение, получим:

S = 1500/0,5*1,23*6³ = 11,292 м²

Площадь круга вычисляется по формуле:

S = πr²

где π – математическая константа (3,14), а r² – квадрат радиуса окружности ветроколеса.

В нашем случае r² = 11,292/3,14 = 3,596.

Следовательно, радиус ветроколеса будет равен 1,89 м, а его диаметр – 3,78 м.

Теперь необходимо удостовериться в том, что такое ветроколесо сможет при ветре – 6 м/с развить достаточное количество оборотов. В этом нам поможет коэффициент быстроходности ветряка – Z (у трехлопастных устройств Z=5).

Окружная (концевая) скорость лопастей ветряка с коэффициентом быстроходности Z5 будет равна произведению коэффициента (Z) на скорость ветра (6*5=30 м/с). Периметр ветроколеса диаметром 3,78 метра равен 11,87 м (L=2πr). Это длина его окружности по внешнему диаметру лопастей, то есть, расстояние, которое конец каждой лопасти проходит за один оборот. Следовательно, за секунду каждая лопасть сделает 2,53 оборота (30 м/с делим на 11,87 м) или 151 оборот за минуту. Что нам и требовалось.

Для того чтобы увеличить обороты, мы можем уменьшить диаметр ветроколеса, но мощность винта в этом случае снизится.

Уменьшение диаметра ветроколеса должно давать увеличение оборотов. Его можно уменьшать до тех пор, пока мощности винта будет хватать для прокручивания генератора под нагрузкой. Это и будут оптимальные параметры.

Мы представили вашему вниманию методику «грубого» расчета ветроколеса, основанную на характеристиках генератора и существующих потребностях в альтернативной электроэнергии.

Учитывая, что большой ветряк и построить сложно, и обслуживать – непросто, конструкцию рабочего винта можно рассчитать под конкретные условия эксплуатации (добавляя или уменьшая количество лопастей, а также меняя при этом их длину). Это поможет изменить коэффициент быстроходности, а, следовательно, и количество оборотов. Также при недостаточном количестве оборотов мощные ветрогенераторы (особенно многолопастные – тихоходные) оснащаются дополнительным редуктором-мультипликатором.

При малых скоростях вращения ротора выработки электроэнергии нет вообще. Мультипликатор решает эту проблему даже при малых оборотах.

Как бы мастер ни старался, самодельный ветрогенератор всегда будет далек от совершенства: самодельные лопасти, самодельные катушки – при изготовлении всего этого трудно соблюсти рекомендуемые аэродинамические и электротехнические параметры. И если в теории мы рассчитали, что ветроколесо диаметром 3,78 метра (при ветре 6 м/с) позволит получить нам 300 Вт*ч электроэнергии, на практике этот показатель можно смело уменьшить на 30%. Этим самым мы на стадии расчетов учтем недостатки кустарной сборки и возможные потери мощности.

Расчет генератора

Рассмотрим последовательность расчета трехфазного генератора переменного тока на постоянных магнитах. Трехфазные генераторы получили значительно более широкое распространение (нежели однофазные) за счет своих характеристик: отсутствие сильных вибраций и гула во время работы, улучшенные характеристики по мощности, току и т. д.

Мощность генератора зависит от целого ряда факторов: скорость вращения, величина магнитной индукции, количество витков на обмотках статора и т. д. Также она напрямую зависит от величины ЭДС генератора, которая определяется по формуле:

E=B•V•L

  • E – ЭДС (В);
  • B – величина магнитной индукции (Тс);
  • V – линейная скорость движения магнитов (м/с) – произведение длины окружности ротора на количество оборотов;
  • L – активная длина проводника (м), которую перекрывают магниты генератора.

Среднее значение индукции постоянных магнитов, используемых в составе генераторов переменного тока, равно 0.8 Тл. Его можно смело применять во время осуществления предварительных расчетов.

Рассмотрим последовательность предварительного расчета трехфазного аксиального генератора, пользуясь примером, который предложил один из пользователей FORUMHOUSE.

Вот, что я имею: 24 магнита (неодимовые) толщиной – 5 мм, шириной – 9.5 мм, длиной – 20 мм. Имею среднегодовую скорость ветра – 5 м/сек. Планирую сделать два ротора – по 12 магнитов на роторе (то есть – 12 полюсов). Соотношение полюсов и катушек – 2/3 (на каждые 2 полюса идет 3 катушки). Получаем 12 полюсов и 18 катушек (по 12 магнитов на каждом диске ротора). Ветроколесо выбрал диаметром 2 метра (двухлопастное). Его быстроходность – Z7. При ветре 5 м/с ветряк должен развивать 334 об/мин (334/60= 5,6 об/сек).

Пользователя интересовал расчет дискового генератора аксиального типа.

Преимущества аксиальных генераторов заключаются в отсутствии магнитного залипания, что позволяет им стартовать при сравнительно небольшой скорости ветра (около 2-х м/с). Основной их недостаток, в сравнении с классическими самодельными моделями, заключается в том, что для получения одинаковой мощности на сборку аксиального генератора необходимо потратить, как минимум, в 2 раза больше магнитов.

Под классическими моделями подразумеваются устройства, изготовленные из асинхронного двигателя или из стандартного автомобильного генератора.

О расчете мощности ветрогенератора

Дата публикации: 15 февраля 2019

От штиля до урагана

Прежде чем перейти к разговору о том, как сделать точный расчёт ветрогенератора, познакомимся с простейшей схемой определения силы ветра. Выйдите в чистое поле или на опушку леса в тихий солнечный день сентября. Дымок от вашего костра поднимается вертикально, деревья не шелохнутся. И лишь осиновые листья еле вздрагивают, словно испугались вашего взгляда. Воздух затих, словно отдыхает перед предстоящей большой работой. Полный штиль. Теперь – внимание.

  1. Через несколько минут дымок заметно начал отклоняться в сторону, вы ощутили мимолётно-нежное прикосновение воздуха к вашему лицу. Ветром такое явление назвать ещё трудно, но движение явно началось. Знайте – скорость в данный момент составляет от 30 сантиметров до одного метра в секунду. Английский адмирал Бофорт назвал такое движение тихим ветерком.
  2. Прошло ещё полчаса и зашелестели листья, закачалась трава, лицо ощутило еле уловимую прохладу воздуха. Скорость его движения составила уже до 3 метров в секунду – это лёгкий ветер по знаменитой шкале Бофорта.
  3. Заколыхались тонкие веточки деревьев, затрепетали листочки, всё ниже пригибается степной ковыль, ваш костёр уже заметно раздувается и ярче горит, дым стелется к земле. Скорость уже доходит до 5 метров – слабый ветер начал резвиться у вас на глазах.
  4. А вот и верхушки деревьев ожили, зашептались громче ветви, начала подниматься пыль на степной дороге. Скорость доходит до 8 метров. Уже на угнаться за движением воздуха даже босиком. Сдержанно набрал свою силу и пока сохраняет её до определённого времени умеренный ветер.
  5. Терпению его приходит конец и начинают сильнее колебаться ветки, закачались стволы деревьев, ветер достигает скорости почти 11 метров в секунду и превращается в свежий.
  6. Сдержанно загудел лес, начали посвистывать провода на столбах, закачались толстые ветки и стволы. Ветер успевает преодолеть расстояние 14 метров в секунду и приобретает характеристику сильного.
  7. Дружно закачались под напором воздуха все стволы деревьев, лес заглушает голоса, идти против ветра уже затруднительно. Знайте – скорость достигла 17 метров и ветер приобрёл крепкий характер.
  8. Раскачались все деревья с такой силой, что начали ломаться небольшие ветки, ходить почти невозможно, хочется приникнуть к земле и ползти в укрытие. Значит скорость достигла 20 метров и ветер уже имеет очень крепкий характер.
  9. За короткое время передвижение воздуха набирает силу. На улицах города находиться опасно: летят предметы, сносит старые крыши. В лесу с треском ломаются и летят толстые ветки, волна в море поднимает и опускает корабли на 3-4 метра вниз-вверх, скорость ветра достигла 24 метров в секунду. По определению адмирала Бофорта это уже начался шторм.
  10. Деревья не выдерживают натиска, с оглушительным треском ломаются, многие вырываются с корнем, рушатся старые здания, летят крыши как огромные птицы смерти, ветер преодолевает за секунду 28 метров – сильный шторм.
  11. Начались массовые разрушения сооружений, колобками катятся автомашины, ветер сметает всё на своём пути, волна на море достигает высоты более пяти метров и корабль бросает, как щепку, в десятиметровую пропасть и снова выносит на поверхность, прижимая матросов к палубе с неимоверной силой. Ветер превышает скорость 30 метров в секунду. Вступил в свои права жестокий шторм.
  12. И, наконец, (не дай Бог никому его испытать ни на море, ни на суше), — ураган, когда разрушительный ветер превышает 33 метра в секунду. Всё сметается с лица земли, море свирепеет и треплет корабль, как голодный волк ягнёнка.

Вот мы и познакомились с характеристиками движения воздуха от штиля до урагана, которые названы в честь автора шкалой Бофорта. Это 12-балльная шкала скорости ветров. Теперь мы можем визуально определять скорость ветра и брать его за основу, когда надо сделать расчет мощности ветрогенератора.

Читайте также:  Газонные светильники на солнечных батареях: устройство, как выбрать + нюансы монтажа

При расчете ветряка основным параметром выступает скорость ветра. Для каждого ветрогенератора этот параметр индивидуален. В большинстве установок лопасти приводятся в движение при воздействии на них ветра от 2 м/с. И только при 7-11 м/с (с учетом самой установки) КПД ветряка будет максимальным. Первая скорость – начальная, вторая – номинальная. Оба этих параметра указываются производителем на упаковке каждой модели ветряка.

Альтернативная энергия своими руками – это вполне реально. Так, чтобы делать расчет мощности ветрогенератора, сначала придется проанализировать скорость ветра в вашем регионе. Для этого придется потратить не один месяц. Максимально вероятные параметры скорости ветра не вычислить за 1-2 раза. Потребуется сделать десятки замеров. Если времени на такие исследования нет, то можно запросить данные у местной метеостанции.

Чтобы электроэнергия вырабатывалась постоянно, при расчете необходимо учитывать среднюю скорость ветра в конкретном регионе. Ее можно узнать даже из прогноза погоды или изучив карту ветров. Номинальную скорость рекомендуется измерять специальными приборами прямо на участке, где будет располагаться ветряк. Это важно, поскольку дом может находиться на возвышении или, наоборот, в низине, где ветра практически нет.

Расчет мощности ветряка

Перед тем как своими руками сделать ветрогенератор, необходимо рассчитать его мощность. Ее приравнивают к мощности ветрового потока, который «гуляет» по конкретной местности. Для этого используют такую формулу:

где r – показатель плотности воздуха (1,225 кг/м 3 ), V – значение, отражающее с какой скоростью движется поток (м/с), S – площадь потока (м 2 ).

Чтобы рассчитать ветрогенератор, можно для примера взять площадь винта в 3 м 2 , а скорость ветра – 10 м/с. Тогда получится следующее значение: 1,225 · 10 3 · 3/2 = 1837,5 Вт. Что касается винтов, то для небольшого дома их радиус должен быть хотя бы 3-4 м. Тогда диаметр ограничивается значениями в 6-8 м. Такие параметры используются, если ветряк должен обеспечивать электроэнергией весь дом, т. е. его применяют в качестве основного, а не дополнительного источника.

В рассчитанной мощности ветрового потока не были учтены потери. Конечное значение будет еще несколько ниже. Для получения точного результата его умножают на коэффициент, равный:

  • 35-45% – для ветрогенераторов с 3 горизонтальными лопастями;
  • 15-25% – для ветряков типа Савониус с вертикальными лопастями.

С учетом коэффициента использования энергии ветра мощность ветрогенератора может составить 1837,5 · 40% = 735 Вт (для горизонтальной установки) и 1837,5 · 20% = 367,5 Вт.

На следующем шаге расчета должен быть учтен еще КПД самого генератора, равный:

  • 80% – для установок, в основе работы которых лежат магниты;
  • 60% – для генератора с электровозбуждением.

Тогда для ветряка с горизонтальными лопастями требуемая мощность составит 735 · 80% = 588 Вт. Еще 20% из этого значения вычитаются на потери в контроллерах, проводах и диодном мосту. Тогда от изначального значения в 1837,5 Вт остается 588 – 20% = 470,4 Вт.

Так, при расчете мощности ветрогенератора для дома и дачи ожидаемое значение можно смело делить пополам. Лучше сразу проектировать установку в 2 раза мощнее, чем требуется по расчетам. Так вы компенсируете все недостатки, включая те или иные свойства используемых материалов и нюансы сборки в домашних условиях. Такой ветрогенератор будет обеспечивать ваше жилище необходимой электроэнергией без перебоев.

+1 …. это просто какой то пипец.
7км/час = 1,94 м/с ….
Для Ветрогенераторов 1кВт + это даже не стартовая скорость …. а тут уже 40% от 20кВт начинает давать.
Вот после таких статей дурачки и начинают клепать кучу самоделок — и разочаровываются данным направлением.

«Скорость ветра 7 километров в час» — какая безграмотная описка…
«Теперь определим количество электроэнергии, которое надо для содержания такого заведения. Срок возьмём один месяц. На один номер потребуется около 50 квт, на 7 номеров 350 квт. Плюс на ресторан 2530 квт, итого 2880 квт в месяц. Самая высокая нагрузка в часы «пик» доходит до 8 квт. Наша задача определить, какая мощность ветрогенератора нужна, чтобы обеспечить энергией такое заведение.

При расходе электроэнергии в 2880 квт в месяц каждый час будет потребляться 4 квт. Да плюс теплонасос возьмёт 3.64 квт. Значит, мощность установленного ветрогенератора должна быть не менее 7,64 квт/час.»

Более безграмотного расчета не приходилось встречать.
Термины потребления электроэнергии в кВт*ч путают в расчете с мощностью в кВт . … (куры + коровы/яца = кг мяса…)

Вам нужно войти, чтобы оставить комментарий.

Калькулятор расчета прогнозируемой мощности ветрогенератора

Рост цен на энергоносители заставляет многих владельцев домов задумываться над возможностью использования альтернативных источников энергии. Одним из вариантов видится использование ветрогенераторов. Источник – абсолютно легальный, так как никаких значимых ограничений по его использованию нет. И пока еще остается совершенно бесплатным – выработка электроэнергии таким способом в целях личного применения никакими налогами не облагается.

Калькулятор расчета прогнозируемой мощности ветрогенератора

Готовые ветровые энергетические установки – довольно дорогое удовольствие, поэтому домашние мастера начинают строить планы по самостоятельному их изготовлению. Но прежде чем приступать к реализации такого, признаемся, очень непростого и во многом спорного проекта, есть смысл хотя бы примерно прикинуть – какой же ожидается выход выработанной энергии. Иными словами, будет ли какая-то реальная отдача взамен затраченных средств, усилий, времени. В этом вопросе, возможно, окажет помощь предлагаемый калькулятор расчета прогнозируемой мощности ветрогенератора.

Ниже будет дан ряд пояснений по проведению расчета. Сразу оговоримся – приведенный алгоритм предназначен для оценки только осевых горизонтальных ветрогенераторов.

Калькулятор расчета прогнозируемой мощности ветрогенератора

Пояснения по проведению расчетов

Следует правильно понимать – никакой, даже самый совершенный и напичканный современной электроникой генератор не берет энергию ниоткуда, и не способен выдать больше того показателя, который определяется скоростью ветра и размерами ветряка. Иными словами, даже в идеальных условиях можно получить только ту энергию, которая переносится ветровым потоком через определенную площадь. Понятно, что площадью выступает в данном случае площадь круга, образованного вращением лопастей горизонтального ветряка.

Но весьма значительная часть этой энергии расходуется, так сказать, бесполезно – это создание завихрений воздуха, несоврешенсво крыльчатки, потери на силы трения в механике самого ветряка, системы передачи вращательного момента и в генераторе. Это банальный нагрев механизмов, потери в целях преобразования и передачи тока и многое другое. И считается очень неплохим показателем, если на выходе остается порядка 30÷40% от исходного энергетического потенциала. А на практике получается и того меньше.

Значит, задумывая создание ветровой энергетической установки, следует оценить, какое же от неё ожидается поступление электрической энергии. Оно зависит от скорости ветра (в кубической зависимости) и диаметра ветряка (в квадратичной).

Скорость ветра, понятное дело – величина непостоянная. Но для каждой местности рассчитаны среднегодовые показатели, на которые можно ориентироваться, если составляется прогноз на некоторую перспективу (месяц, год и т.п.). Эти показатели можно подсмотреть на карте схеме, размещённой ниже, но лучше все же уточнить в местной метеорологической службе.

Карта-схема среднегодовых скоростей ветра по регионам России

Итак, если есть намётки по размерам лопастей создаваемого генератора, можно провести и расчет мощности. Формула уже заложена в алгоритм калькулятора.

  • Пользователю для начала предлагается указать скорость ветра. Некоторые пояснения на этот счет. Прогнозы выработки электроэнергии на определенный период проводятся именно по среднегодовой скорости. А вот номинальная мощность ВЭУ обычно вычисляется по так называемой расчётной скорости ветра, которая может быть в 1,5÷2 раза выше.
  • Вторым пунктом указывается радиус ротора ветрогенератора, то есть расстояние от его оси до края лопасти.

(Интересно, что от количества лопастей ничего в данном случае не зависит. Точнее, даже несколько обратная картина – если лопастей больше трех, то может стать только хуже, так как теряется скорость вращения).

  • Если известны показатели КПД самого генератора и системы передачи вращения (редуктора), то они указываются в соответствующих полях. Если таких данных нет – можно оставить без изменения по умолчанию.

Остается нажать на кнопку расчета и получить результат. При вычислении от среднегодовой скорости ветра имеется возможность представить, какое количество энергии можно будет получить за определенный период.

К великому разочарованию многих, показатели могут быть более чем скромными. Так что есть над чем подумать, прежде чем принимать какое-то решение.

Ветрогенератор – насколько реалистичны возлагаемые на него надежды?

Увы, говорить о простоте реализации такого проекта и обретении бесплатного источника энергии, который решит все проблемы — было бы большим преувеличением. Для начала следует реально оценить и приобретаемые выгоды, и неизбежные немалые затраты, и собственные возможности. Надеемся, в этом поможет публикация нашего портала «Ветрогенератор своими руками» .

Ссылка на основную публикацию
×
×